This macro shows several ways to invert a matrix . 
Each method is a trade-off between accuracy of the inversion and speed. Which method to chose depends on "how well-behaved" the matrix is. This is best checked through a call to Condition(), available in each decomposition class. A second possibility (less preferred) would be to check the determinant
USAGE
This macro can be executed with Cling or ACLIC
- via the interpretor, do 
double invertMatrix(const Matrix &matrix, Matrix &inverse)
 
  
- via ACLIC 
R__EXTERN TSystem * gSystem
 
virtual int Load(const char *module, const char *entry="", Bool_t system=kFALSE)
Load a shared library.
 
  
 
--------------------------------------------------------
Inversion results for a (6,6) matrix
For each inversion procedure we check the maximum size  
of the off-diagonal elements of Inv(A) * A              
--------------------------------------------------------
1. Use .InvertFast(&det)
  Maximum off-diagonal = 8.31175e-05
  Determinant          = 5.3673e-18
2. Use .Invert(&det)
  Maximum off-diagonal = 1.74623e-10
  Determinant          = 5.3673e-18
3. Use TDecompLU
  Maximum off-diagonal = 1.74623e-10
  Determinant          = 5.3673e-18
4. Use TDecompSVD on non-square matrix
  Maximum off-diagonal = 5.45697e-12
  Determinant          = 1.34646e-11
   
#include <iostream>
 
{
   if (msize < 2 || msize > 10) {
      std::cout << "2 <= msize <= 10" <<std::endl;
      return;
   }
   std::cout << "--------------------------------------------------------" <<std::endl;
   std::cout << "Inversion results for a ("<<msize<<","<<msize<<") matrix" <<std::endl;
   std::cout << "For each inversion procedure we check the maximum size  " <<std::endl;
   std::cout << "of the off-diagonal elements of Inv(A) * A              " <<std::endl;
   std::cout << "--------------------------------------------------------" <<std::endl;
 
 
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
 
   std::cout << "1. Use .InvertFast(&det)" <<std::endl;
   if (msize > 6)
      std::cout << " for ("<<msize<<","<<msize<<") this is identical to .Invert(&det)" <<std::endl;
 
 
   
   
 
   const Double_t U1_max_offdiag = (U1.Abs()).Max();
 
   std::cout << "  Maximum off-diagonal = " << U1_max_offdiag << std::endl;
   std::cout << "  Determinant          = " << det1 << std::endl;
 
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
 
   std::cout << "2. Use .Invert(&det)" << std::endl;
 
 
   const Double_t U2_max_offdiag = (U2.Abs()).Max();
 
   std::cout << "  Maximum off-diagonal = " << U2_max_offdiag << std::endl;
   std::cout << "  Determinant          = " << det2 << std::endl;
 
   
   
   
   
   
   
   
   
 
   std::cout << "3. Use TDecompLU" << std::endl;
 
 
   
   
   
   
   
 
   lu.Invert(H3);
   lu.Det(d1_lu,d2_lu);
 
   const Double_t U3_max_offdiag = (U3.Abs()).Max();
 
   std::cout << "  Maximum off-diagonal = " << U3_max_offdiag << std::endl;
   std::cout << "  Determinant          = " << det3 << std::endl;
 
   
   
   
   std::cout << "4. Use TDecompSVD on non-square matrix" << std::endl;
 
 
 
   svd.Det(d1_svd,d2_svd);
 
   const Double_t U4_max_offdiag = (U4.Abs()).Max();
 
   std::cout << "  Maximum off-diagonal = " << U4_max_offdiag << std::endl;
   std::cout << "  Determinant          = " << det4 << std::endl;
}
THilbertMatrixT< Double_t > THilbertMatrixD
 
Single Value Decomposition class.
 
TMatrixT< Element > & InvertFast(Double_t *det=nullptr)
Invert the matrix and calculate its determinant, however upto (6x6) a fast Cramer inversion is used .
 
TMatrixT< Element > & Invert(Double_t *det=nullptr)
Invert the matrix and calculate its determinant.
 
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Returns x raised to the power y.
 
- Author
 - Eddy Offermann 
 
Definition in file invertMatrix.C.