19   TString fname = 
"./tmva_class_example.root";
 
   24      input = 
TFile::Open(
"http://root.cern.ch/files/tmva_class_example.root", 
"CACHEREAD");
 
   27      std::cout << 
"ERROR: could not open data file" << std::endl;
 
   46   dataloader->
AddVariable(
"myvar1 := var1+var2", 
'F');
 
   47   dataloader->
AddVariable(
"myvar2 := var1-var2", 
"Expression 2", 
"", 
'F');
 
   48   dataloader->
AddVariable(
"var3", 
"Variable 3", 
"units", 
'F');
 
   49   dataloader->
AddVariable(
"var4", 
"Variable 4", 
"units", 
'F');
 
   55   dataloader->
AddSpectator(
"spec1 := var1*2", 
"Spectator 1", 
"units", 
'F');
 
   56   dataloader->
AddSpectator(
"spec2 := var1*3", 
"Spectator 2", 
"units", 
'F');
 
   71      "", 
"", 
"nTrain_Signal=1000:nTrain_Background=1000:SplitMode=Random:NormMode=NumEvents:!V");
 
   78                                             "UseBaggedBoost:BaggedSampleFraction=0.5:nCuts=20:MaxDepth=2");
 
   90   c->SetTitle(
"ROC-Integral Curve");
 
   93   for (
UInt_t i = 0; i < results.size(); i++) {
 
   94      if (!results[i].IsCutsMethod()) {
 
   95         auto roc = results[i].GetROCGraph();
 
   96         roc->SetLineColorAlpha(i + 1, 0.1);
 
  101   mg->GetXaxis()->SetTitle(
" Signal Efficiency ");
 
  102   mg->GetYaxis()->SetTitle(
" Background Rejection ");
 
  103   c->BuildLegend(0.15, 0.15, 0.3, 0.3);
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
 
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
 
R__EXTERN TSystem * gSystem
 
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
 
static Bool_t SetCacheFileDir(ROOT::Internal::TStringView cacheDir, Bool_t operateDisconnected=kTRUE, Bool_t forceCacheread=kFALSE)
 
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
 
void Close(Option_t *option="") override
Close a file.
 
void AddSignalTree(TTree *signal, Double_t weight=1.0, Types::ETreeType treetype=Types::kMaxTreeType)
number of signal events (used to compute significance)
 
void AddSpectator(const TString &expression, const TString &title="", const TString &unit="", Double_t min=0, Double_t max=0)
user inserts target in data set info
 
void SetBackgroundWeightExpression(const TString &variable)
 
void PrepareTrainingAndTestTree(const TCut &cut, const TString &splitOpt)
prepare the training and test trees -> same cuts for signal and background
 
void AddBackgroundTree(TTree *background, Double_t weight=1.0, Types::ETreeType treetype=Types::kMaxTreeType)
number of signal events (used to compute significance)
 
void AddVariable(const TString &expression, const TString &title, const TString &unit, char type='F', Double_t min=0, Double_t max=0)
user inserts discriminating variable in data set info
 
virtual void BookMethod(TString methodname, TString methodtitle, TString options="")
Method to book the machine learning method to perform the algorithm.
 
std::vector< ClassificationResult > & GetResults()
Return the vector of TMVA::Experimental::ClassificationResult objects.
 
virtual void Evaluate()
Method to perform Train/Test over all ml method booked.
 
A TMultiGraph is a collection of TGraph (or derived) objects.
 
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
 
A TTree represents a columnar dataset.
 
void classification(UInt_t jobs=4)