Definition at line 89 of file MethodDL.h.
Public Member Functions | |
MethodDL (const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption) | |
Constructor. | |
MethodDL (DataSetInfo &theData, const TString &theWeightFile) | |
Constructor. | |
virtual | ~MethodDL () |
Virtual Destructor. | |
void | AddWeightsXMLTo (void *parent) const |
const Ranking * | CreateRanking () |
TString | GetArchitectureString () const |
size_t | GetBatchDepth () const |
size_t | GetBatchHeight () const |
TString | GetBatchLayoutString () const |
size_t | GetBatchSize () const |
size_t | GetBatchWidth () const |
const DeepNetImpl_t & | GetDeepNet () const |
TString | GetErrorStrategyString () const |
size_t | GetInputDepth () const |
size_t | GetInputDim () const |
size_t | GetInputHeight () const |
TString | GetInputLayoutString () const |
std::vector< size_t > | GetInputShape () const |
size_t | GetInputWidth () const |
KeyValueVector_t & | GetKeyValueSettings () |
const KeyValueVector_t & | GetKeyValueSettings () const |
TString | GetLayoutString () const |
DNN::ELossFunction | GetLossFunction () const |
virtual const std::vector< Float_t > & | GetMulticlassValues () |
Double_t | GetMvaValue (Double_t *err=nullptr, Double_t *errUpper=nullptr) |
DNN::EOutputFunction | GetOutputFunction () const |
virtual const std::vector< Float_t > & | GetRegressionValues () |
std::vector< TTrainingSettings > & | GetTrainingSettings () |
const std::vector< TTrainingSettings > & | GetTrainingSettings () const |
TString | GetTrainingStrategyString () const |
DNN::EInitialization | GetWeightInitialization () const |
TString | GetWeightInitializationString () const |
Bool_t | HasAnalysisType (Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets) |
Check the type of analysis the deep learning network can do. | |
virtual TClass * | IsA () const |
KeyValueVector_t | ParseKeyValueString (TString parseString, TString blockDelim, TString tokenDelim) |
Function for parsing the training settings, provided as a string in a key-value form. | |
void | ReadWeightsFromStream (std::istream &) |
virtual void | ReadWeightsFromStream (std::istream &)=0 |
Methods for writing and reading weights. | |
virtual void | ReadWeightsFromStream (TFile &) |
Methods for writing and reading weights. | |
void | ReadWeightsFromXML (void *wghtnode) |
void | SetArchitectureString (TString architectureString) |
void | SetBatchDepth (size_t batchDepth) |
void | SetBatchHeight (size_t batchHeight) |
void | SetBatchSize (size_t batchSize) |
void | SetBatchWidth (size_t batchWidth) |
void | SetErrorStrategyString (TString errorStrategy) |
void | SetInputDepth (int inputDepth) |
Setters. | |
void | SetInputHeight (int inputHeight) |
void | SetInputShape (std::vector< size_t > inputShape) |
void | SetInputWidth (int inputWidth) |
void | SetLayoutString (TString layoutString) |
void | SetOutputFunction (DNN::EOutputFunction outputFunction) |
void | SetTrainingStrategyString (TString trainingStrategyString) |
void | SetWeightInitialization (DNN::EInitialization weightInitialization) |
void | SetWeightInitializationString (TString weightInitializationString) |
virtual void | Streamer (TBuffer &) |
void | StreamerNVirtual (TBuffer &ClassDef_StreamerNVirtual_b) |
void | Train () |
Methods for training the deep learning network. | |
Public Member Functions inherited from TMVA::MethodBase | |
MethodBase (const TString &jobName, Types::EMVA methodType, const TString &methodTitle, DataSetInfo &dsi, const TString &theOption="") | |
standard constructor | |
MethodBase (Types::EMVA methodType, DataSetInfo &dsi, const TString &weightFile) | |
constructor used for Testing + Application of the MVA, only (no training), using given WeightFiles | |
virtual | ~MethodBase () |
destructor | |
void | AddOutput (Types::ETreeType type, Types::EAnalysisType analysisType) |
TDirectory * | BaseDir () const |
returns the ROOT directory where info/histograms etc of the corresponding MVA method instance are stored | |
virtual void | CheckSetup () |
check may be overridden by derived class (sometimes, eg, fitters are used which can only be implemented during training phase) | |
DataSet * | Data () const |
DataSetInfo & | DataInfo () const |
virtual void | DeclareCompatibilityOptions () |
options that are used ONLY for the READER to ensure backward compatibility they are hence without any effect (the reader is only reading the training options that HAD been used at the training of the .xml weight file at hand | |
void | DisableWriting (Bool_t setter) |
Bool_t | DoMulticlass () const |
Bool_t | DoRegression () const |
void | ExitFromTraining () |
Types::EAnalysisType | GetAnalysisType () const |
UInt_t | GetCurrentIter () |
virtual Double_t | GetEfficiency (const TString &, Types::ETreeType, Double_t &err) |
fill background efficiency (resp. | |
const Event * | GetEvent () const |
const Event * | GetEvent (const TMVA::Event *ev) const |
const Event * | GetEvent (Long64_t ievt) const |
const Event * | GetEvent (Long64_t ievt, Types::ETreeType type) const |
const std::vector< TMVA::Event * > & | GetEventCollection (Types::ETreeType type) |
returns the event collection (i.e. | |
TFile * | GetFile () const |
const TString & | GetInputLabel (Int_t i) const |
const char * | GetInputTitle (Int_t i) const |
const TString & | GetInputVar (Int_t i) const |
TMultiGraph * | GetInteractiveTrainingError () |
const TString & | GetJobName () const |
virtual Double_t | GetKSTrainingVsTest (Char_t SorB, TString opt="X") |
virtual Double_t | GetMaximumSignificance (Double_t SignalEvents, Double_t BackgroundEvents, Double_t &optimal_significance_value) const |
plot significance, \( \frac{S}{\sqrt{S^2 + B^2}} \), curve for given number of signal and background events; returns cut for maximum significance also returned via reference is the maximum significance | |
UInt_t | GetMaxIter () |
Double_t | GetMean (Int_t ivar) const |
const TString & | GetMethodName () const |
Types::EMVA | GetMethodType () const |
TString | GetMethodTypeName () const |
virtual TMatrixD | GetMulticlassConfusionMatrix (Double_t effB, Types::ETreeType type) |
Construct a confusion matrix for a multiclass classifier. | |
virtual std::vector< Float_t > | GetMulticlassEfficiency (std::vector< std::vector< Float_t > > &purity) |
virtual std::vector< Float_t > | GetMulticlassTrainingEfficiency (std::vector< std::vector< Float_t > > &purity) |
Double_t | GetMvaValue (const TMVA::Event *const ev, Double_t *err=nullptr, Double_t *errUpper=nullptr) |
const char * | GetName () const |
UInt_t | GetNEvents () const |
UInt_t | GetNTargets () const |
UInt_t | GetNvar () const |
UInt_t | GetNVariables () const |
virtual Double_t | GetProba (const Event *ev) |
virtual Double_t | GetProba (Double_t mvaVal, Double_t ap_sig) |
compute likelihood ratio | |
const TString | GetProbaName () const |
virtual Double_t | GetRarity (Double_t mvaVal, Types::ESBType reftype=Types::kBackground) const |
compute rarity: | |
virtual void | GetRegressionDeviation (UInt_t tgtNum, Types::ETreeType type, Double_t &stddev, Double_t &stddev90Percent) const |
const std::vector< Float_t > & | GetRegressionValues (const TMVA::Event *const ev) |
Double_t | GetRMS (Int_t ivar) const |
virtual Double_t | GetROCIntegral (PDF *pdfS=nullptr, PDF *pdfB=nullptr) const |
calculate the area (integral) under the ROC curve as a overall quality measure of the classification | |
virtual Double_t | GetROCIntegral (TH1D *histS, TH1D *histB) const |
calculate the area (integral) under the ROC curve as a overall quality measure of the classification | |
virtual Double_t | GetSeparation (PDF *pdfS=nullptr, PDF *pdfB=nullptr) const |
compute "separation" defined as | |
virtual Double_t | GetSeparation (TH1 *, TH1 *) const |
compute "separation" defined as | |
Double_t | GetSignalReferenceCut () const |
Double_t | GetSignalReferenceCutOrientation () const |
virtual Double_t | GetSignificance () const |
compute significance of mean difference | |
const Event * | GetTestingEvent (Long64_t ievt) const |
Double_t | GetTestTime () const |
const TString & | GetTestvarName () const |
virtual Double_t | GetTrainingEfficiency (const TString &) |
const Event * | GetTrainingEvent (Long64_t ievt) const |
virtual const std::vector< Float_t > & | GetTrainingHistory (const char *) |
UInt_t | GetTrainingROOTVersionCode () const |
TString | GetTrainingROOTVersionString () const |
calculates the ROOT version string from the training version code on the fly | |
UInt_t | GetTrainingTMVAVersionCode () const |
TString | GetTrainingTMVAVersionString () const |
calculates the TMVA version string from the training version code on the fly | |
Double_t | GetTrainTime () const |
TransformationHandler & | GetTransformationHandler (Bool_t takeReroutedIfAvailable=true) |
const TransformationHandler & | GetTransformationHandler (Bool_t takeReroutedIfAvailable=true) const |
TString | GetWeightFileName () const |
retrieve weight file name | |
Double_t | GetXmax (Int_t ivar) const |
Double_t | GetXmin (Int_t ivar) const |
Bool_t | HasMVAPdfs () const |
void | InitIPythonInteractive () |
Bool_t | IsModelPersistence () const |
virtual Bool_t | IsSignalLike () |
uses a pre-set cut on the MVA output (SetSignalReferenceCut and SetSignalReferenceCutOrientation) for a quick determination if an event would be selected as signal or background | |
virtual Bool_t | IsSignalLike (Double_t mvaVal) |
uses a pre-set cut on the MVA output (SetSignalReferenceCut and SetSignalReferenceCutOrientation) for a quick determination if an event with this mva output value would be selected as signal or background | |
Bool_t | IsSilentFile () const |
virtual void | MakeClass (const TString &classFileName=TString("")) const |
create reader class for method (classification only at present) | |
TDirectory * | MethodBaseDir () const |
returns the ROOT directory where all instances of the corresponding MVA method are stored | |
virtual std::map< TString, Double_t > | OptimizeTuningParameters (TString fomType="ROCIntegral", TString fitType="FitGA") |
call the Optimizer with the set of parameters and ranges that are meant to be tuned. | |
void | PrintHelpMessage () const |
prints out method-specific help method | |
void | ProcessSetup () |
process all options the "CheckForUnusedOptions" is done in an independent call, since it may be overridden by derived class (sometimes, eg, fitters are used which can only be implemented during training phase) | |
void | ReadStateFromFile () |
Function to write options and weights to file. | |
void | ReadStateFromStream (std::istream &tf) |
read the header from the weight files of the different MVA methods | |
void | ReadStateFromStream (TFile &rf) |
write reference MVA distributions (and other information) to a ROOT type weight file | |
void | ReadStateFromXMLString (const char *xmlstr) |
for reading from memory | |
void | RerouteTransformationHandler (TransformationHandler *fTargetTransformation) |
virtual void | Reset () |
virtual void | SetAnalysisType (Types::EAnalysisType type) |
void | SetBaseDir (TDirectory *methodDir) |
void | SetFile (TFile *file) |
void | SetMethodBaseDir (TDirectory *methodDir) |
void | SetMethodDir (TDirectory *methodDir) |
void | SetModelPersistence (Bool_t status) |
void | SetSignalReferenceCut (Double_t cut) |
void | SetSignalReferenceCutOrientation (Double_t cutOrientation) |
void | SetSilentFile (Bool_t status) |
void | SetTestTime (Double_t testTime) |
void | SetTestvarName (const TString &v="") |
void | SetTrainTime (Double_t trainTime) |
virtual void | SetTuneParameters (std::map< TString, Double_t > tuneParameters) |
set the tuning parameters according to the argument This is just a dummy . | |
void | SetupMethod () |
setup of methods | |
void | StreamerNVirtual (TBuffer &ClassDef_StreamerNVirtual_b) |
virtual void | TestClassification () |
initialization | |
virtual void | TestMulticlass () |
test multiclass classification | |
virtual void | TestRegression (Double_t &bias, Double_t &biasT, Double_t &dev, Double_t &devT, Double_t &rms, Double_t &rmsT, Double_t &mInf, Double_t &mInfT, Double_t &corr, Types::ETreeType type) |
calculate <sum-of-deviation-squared> of regression output versus "true" value from test sample | |
bool | TrainingEnded () |
void | TrainMethod () |
virtual void | WriteEvaluationHistosToFile (Types::ETreeType treetype) |
writes all MVA evaluation histograms to file | |
virtual void | WriteMonitoringHistosToFile () const |
write special monitoring histograms to file dummy implementation here --------------— | |
void | WriteStateToFile () const |
write options and weights to file note that each one text file for the main configuration information and one ROOT file for ROOT objects are created | |
Public Member Functions inherited from TMVA::IMethod | |
IMethod () | |
virtual | ~IMethod () |
void | StreamerNVirtual (TBuffer &ClassDef_StreamerNVirtual_b) |
Public Member Functions inherited from TMVA::Configurable | |
Configurable (const TString &theOption="") | |
constructor | |
virtual | ~Configurable () |
default destructor | |
void | AddOptionsXMLTo (void *parent) const |
write options to XML file | |
template<class T > | |
void | AddPreDefVal (const T &) |
template<class T > | |
void | AddPreDefVal (const TString &optname, const T &) |
void | CheckForUnusedOptions () const |
checks for unused options in option string | |
template<class T > | |
TMVA::OptionBase * | DeclareOptionRef (T &ref, const TString &name, const TString &desc) |
template<class T > | |
OptionBase * | DeclareOptionRef (T &ref, const TString &name, const TString &desc="") |
template<class T > | |
TMVA::OptionBase * | DeclareOptionRef (T *&ref, Int_t size, const TString &name, const TString &desc) |
template<class T > | |
OptionBase * | DeclareOptionRef (T *&ref, Int_t size, const TString &name, const TString &desc="") |
const char * | GetConfigDescription () const |
const char * | GetConfigName () const |
const TString & | GetOptions () const |
MsgLogger & | Log () const |
virtual void | ParseOptions () |
options parser | |
void | PrintOptions () const |
prints out the options set in the options string and the defaults | |
void | ReadOptionsFromStream (std::istream &istr) |
read option back from the weight file | |
void | ReadOptionsFromXML (void *node) |
void | SetConfigDescription (const char *d) |
void | SetConfigName (const char *n) |
void | SetMsgType (EMsgType t) |
void | SetOptions (const TString &s) |
void | StreamerNVirtual (TBuffer &ClassDef_StreamerNVirtual_b) |
void | WriteOptionsToStream (std::ostream &o, const TString &prefix) const |
write options to output stream (e.g. in writing the MVA weight files | |
Public Member Functions inherited from TNamed | |
TNamed () | |
TNamed (const char *name, const char *title) | |
TNamed (const TNamed &named) | |
TNamed copy ctor. | |
TNamed (const TString &name, const TString &title) | |
virtual | ~TNamed () |
TNamed destructor. | |
void | Clear (Option_t *option="") override |
Set name and title to empty strings (""). | |
TObject * | Clone (const char *newname="") const override |
Make a clone of an object using the Streamer facility. | |
Int_t | Compare (const TObject *obj) const override |
Compare two TNamed objects. | |
void | Copy (TObject &named) const override |
Copy this to obj. | |
virtual void | FillBuffer (char *&buffer) |
Encode TNamed into output buffer. | |
const char * | GetName () const override |
Returns name of object. | |
const char * | GetTitle () const override |
Returns title of object. | |
ULong_t | Hash () const override |
Return hash value for this object. | |
TClass * | IsA () const override |
Bool_t | IsSortable () const override |
void | ls (Option_t *option="") const override |
List TNamed name and title. | |
TNamed & | operator= (const TNamed &rhs) |
TNamed assignment operator. | |
void | Print (Option_t *option="") const override |
Print TNamed name and title. | |
virtual void | SetName (const char *name) |
Set the name of the TNamed. | |
virtual void | SetNameTitle (const char *name, const char *title) |
Set all the TNamed parameters (name and title). | |
virtual void | SetTitle (const char *title="") |
Set the title of the TNamed. | |
virtual Int_t | Sizeof () const |
Return size of the TNamed part of the TObject. | |
void | Streamer (TBuffer &) override |
Stream an object of class TObject. | |
void | StreamerNVirtual (TBuffer &ClassDef_StreamerNVirtual_b) |
Public Member Functions inherited from TObject | |
TObject () | |
TObject constructor. | |
TObject (const TObject &object) | |
TObject copy ctor. | |
virtual | ~TObject () |
TObject destructor. | |
void | AbstractMethod (const char *method) const |
Use this method to implement an "abstract" method that you don't want to leave purely abstract. | |
virtual void | AppendPad (Option_t *option="") |
Append graphics object to current pad. | |
virtual void | Browse (TBrowser *b) |
Browse object. May be overridden for another default action. | |
ULong_t | CheckedHash () |
Check and record whether this class has a consistent Hash/RecursiveRemove setup (*) and then return the regular Hash value for this object. | |
virtual const char * | ClassName () const |
Returns name of class to which the object belongs. | |
virtual void | Delete (Option_t *option="") |
Delete this object. | |
virtual Int_t | DistancetoPrimitive (Int_t px, Int_t py) |
Computes distance from point (px,py) to the object. | |
virtual void | Draw (Option_t *option="") |
Default Draw method for all objects. | |
virtual void | DrawClass () const |
Draw class inheritance tree of the class to which this object belongs. | |
virtual TObject * | DrawClone (Option_t *option="") const |
Draw a clone of this object in the current selected pad with: gROOT->SetSelectedPad(c1) . | |
virtual void | Dump () const |
Dump contents of object on stdout. | |
virtual void | Error (const char *method, const char *msgfmt,...) const |
Issue error message. | |
virtual void | Execute (const char *method, const char *params, Int_t *error=nullptr) |
Execute method on this object with the given parameter string, e.g. | |
virtual void | Execute (TMethod *method, TObjArray *params, Int_t *error=nullptr) |
Execute method on this object with parameters stored in the TObjArray. | |
virtual void | ExecuteEvent (Int_t event, Int_t px, Int_t py) |
Execute action corresponding to an event at (px,py). | |
virtual void | Fatal (const char *method, const char *msgfmt,...) const |
Issue fatal error message. | |
virtual TObject * | FindObject (const char *name) const |
Must be redefined in derived classes. | |
virtual TObject * | FindObject (const TObject *obj) const |
Must be redefined in derived classes. | |
virtual Option_t * | GetDrawOption () const |
Get option used by the graphics system to draw this object. | |
virtual const char * | GetIconName () const |
Returns mime type name of object. | |
virtual char * | GetObjectInfo (Int_t px, Int_t py) const |
Returns string containing info about the object at position (px,py). | |
virtual Option_t * | GetOption () const |
virtual UInt_t | GetUniqueID () const |
Return the unique object id. | |
virtual Bool_t | HandleTimer (TTimer *timer) |
Execute action in response of a timer timing out. | |
Bool_t | HasInconsistentHash () const |
Return true is the type of this object is known to have an inconsistent setup for Hash and RecursiveRemove (i.e. | |
virtual void | Info (const char *method, const char *msgfmt,...) const |
Issue info message. | |
virtual Bool_t | InheritsFrom (const char *classname) const |
Returns kTRUE if object inherits from class "classname". | |
virtual Bool_t | InheritsFrom (const TClass *cl) const |
Returns kTRUE if object inherits from TClass cl. | |
virtual void | Inspect () const |
Dump contents of this object in a graphics canvas. | |
void | InvertBit (UInt_t f) |
Bool_t | IsDestructed () const |
IsDestructed. | |
virtual Bool_t | IsEqual (const TObject *obj) const |
Default equal comparison (objects are equal if they have the same address in memory). | |
virtual Bool_t | IsFolder () const |
Returns kTRUE in case object contains browsable objects (like containers or lists of other objects). | |
R__ALWAYS_INLINE Bool_t | IsOnHeap () const |
R__ALWAYS_INLINE Bool_t | IsZombie () const |
void | MayNotUse (const char *method) const |
Use this method to signal that a method (defined in a base class) may not be called in a derived class (in principle against good design since a child class should not provide less functionality than its parent, however, sometimes it is necessary). | |
virtual Bool_t | Notify () |
This method must be overridden to handle object notification. | |
void | Obsolete (const char *method, const char *asOfVers, const char *removedFromVers) const |
Use this method to declare a method obsolete. | |
void | operator delete (void *ptr) |
Operator delete. | |
void | operator delete[] (void *ptr) |
Operator delete []. | |
void * | operator new (size_t sz) |
void * | operator new (size_t sz, void *vp) |
void * | operator new[] (size_t sz) |
void * | operator new[] (size_t sz, void *vp) |
TObject & | operator= (const TObject &rhs) |
TObject assignment operator. | |
virtual void | Paint (Option_t *option="") |
This method must be overridden if a class wants to paint itself. | |
virtual void | Pop () |
Pop on object drawn in a pad to the top of the display list. | |
virtual Int_t | Read (const char *name) |
Read contents of object with specified name from the current directory. | |
virtual void | RecursiveRemove (TObject *obj) |
Recursively remove this object from a list. | |
void | ResetBit (UInt_t f) |
virtual void | SaveAs (const char *filename="", Option_t *option="") const |
Save this object in the file specified by filename. | |
virtual void | SavePrimitive (std::ostream &out, Option_t *option="") |
Save a primitive as a C++ statement(s) on output stream "out". | |
void | SetBit (UInt_t f) |
void | SetBit (UInt_t f, Bool_t set) |
Set or unset the user status bits as specified in f. | |
virtual void | SetDrawOption (Option_t *option="") |
Set drawing option for object. | |
virtual void | SetUniqueID (UInt_t uid) |
Set the unique object id. | |
void | StreamerNVirtual (TBuffer &ClassDef_StreamerNVirtual_b) |
virtual void | SysError (const char *method, const char *msgfmt,...) const |
Issue system error message. | |
R__ALWAYS_INLINE Bool_t | TestBit (UInt_t f) const |
Int_t | TestBits (UInt_t f) const |
virtual void | UseCurrentStyle () |
Set current style settings in this object This function is called when either TCanvas::UseCurrentStyle or TROOT::ForceStyle have been invoked. | |
virtual void | Warning (const char *method, const char *msgfmt,...) const |
Issue warning message. | |
virtual Int_t | Write (const char *name=nullptr, Int_t option=0, Int_t bufsize=0) |
Write this object to the current directory. | |
virtual Int_t | Write (const char *name=nullptr, Int_t option=0, Int_t bufsize=0) const |
Write this object to the current directory. | |
Static Public Member Functions | |
static TClass * | Class () |
static const char * | Class_Name () |
static constexpr Version_t | Class_Version () |
static const char * | DeclFileName () |
Static Public Member Functions inherited from TMVA::MethodBase | |
static TClass * | Class () |
static const char * | Class_Name () |
static constexpr Version_t | Class_Version () |
static const char * | DeclFileName () |
Static Public Member Functions inherited from TMVA::IMethod | |
static TClass * | Class () |
static const char * | Class_Name () |
static constexpr Version_t | Class_Version () |
static const char * | DeclFileName () |
Static Public Member Functions inherited from TMVA::Configurable | |
static TClass * | Class () |
static const char * | Class_Name () |
static constexpr Version_t | Class_Version () |
static const char * | DeclFileName () |
Static Public Member Functions inherited from TNamed | |
static TClass * | Class () |
static const char * | Class_Name () |
static constexpr Version_t | Class_Version () |
static const char * | DeclFileName () |
Static Public Member Functions inherited from TObject | |
static TClass * | Class () |
static const char * | Class_Name () |
static constexpr Version_t | Class_Version () |
static const char * | DeclFileName () |
static Longptr_t | GetDtorOnly () |
Return destructor only flag. | |
static Bool_t | GetObjectStat () |
Get status of object stat flag. | |
static void | SetDtorOnly (void *obj) |
Set destructor only flag. | |
static void | SetObjectStat (Bool_t stat) |
Turn on/off tracking of objects in the TObjectTable. | |
Protected Member Functions | |
void | GetHelpMessage () const |
virtual std::vector< Double_t > | GetMvaValues (Long64_t firstEvt, Long64_t lastEvt, Bool_t logProgress) |
Evaluate the DeepNet on a vector of input values stored in the TMVA Event class Here we will evaluate using a default batch size and the same architecture used for Training. | |
Protected Member Functions inherited from TMVA::MethodBase | |
virtual std::vector< Double_t > | GetDataMvaValues (DataSet *data=nullptr, Long64_t firstEvt=0, Long64_t lastEvt=-1, Bool_t logProgress=false) |
get all the MVA values for the events of the given Data type | |
const TString & | GetInternalVarName (Int_t ivar) const |
const TString & | GetOriginalVarName (Int_t ivar) const |
const TString & | GetWeightFileDir () const |
Bool_t | HasTrainingTree () const |
Bool_t | Help () const |
Bool_t | IgnoreEventsWithNegWeightsInTraining () const |
Bool_t | IsConstructedFromWeightFile () const |
Bool_t | IsNormalised () const |
virtual void | MakeClassSpecific (std::ostream &, const TString &="") const |
virtual void | MakeClassSpecificHeader (std::ostream &, const TString &="") const |
void | NoErrorCalc (Double_t *const err, Double_t *const errUpper) |
void | SetNormalised (Bool_t norm) |
void | SetWeightFileDir (TString fileDir) |
set directory of weight file | |
void | SetWeightFileName (TString) |
set the weight file name (depreciated) | |
void | Statistics (Types::ETreeType treeType, const TString &theVarName, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &) |
calculates rms,mean, xmin, xmax of the event variable this can be either done for the variables as they are or for normalised variables (in the range of 0-1) if "norm" is set to kTRUE | |
Bool_t | TxtWeightsOnly () const |
Bool_t | Verbose () const |
Protected Member Functions inherited from TMVA::Configurable | |
void | EnableLooseOptions (Bool_t b=kTRUE) |
const TString & | GetReferenceFile () const |
Bool_t | LooseOptionCheckingEnabled () const |
void | ResetSetFlag () |
resets the IsSet flag for all declare options to be called before options are read from stream | |
void | WriteOptionsReferenceToFile () |
write complete options to output stream | |
Protected Member Functions inherited from TObject | |
virtual void | DoError (int level, const char *location, const char *fmt, va_list va) const |
Interface to ErrorHandler (protected). | |
void | MakeZombie () |
Private Types | |
using | ArchitectureImpl_t = TMVA::DNN::TCpu< Float_t > |
using | DeepNetImpl_t = TMVA::DNN::TDeepNet< ArchitectureImpl_t > |
enum | ERecurrentLayerType { kLayerRNN = 0 , kLayerLSTM = 1 , kLayerGRU = 2 } |
using | HostBufferImpl_t = typename ArchitectureImpl_t::HostBuffer_t |
using | KeyValueVector_t = std::vector< std::map< TString, TString > > |
using | MatrixImpl_t = typename ArchitectureImpl_t::Matrix_t |
using | ScalarImpl_t = typename ArchitectureImpl_t::Scalar_t |
using | TensorImpl_t = typename ArchitectureImpl_t::Tensor_t |
Private Member Functions | |
template<typename Architecture_t , typename Layer_t > | |
void | CreateDeepNet (DNN::TDeepNet< Architecture_t, Layer_t > &deepNet, std::vector< DNN::TDeepNet< Architecture_t, Layer_t > > &nets) |
After calling the ProcesOptions(), all of the options are parsed, so using the parsed options, and given the architecture and the type of the layers, we build the Deep Network passed as a reference in the function. | |
void | DeclareOptions () |
The option handling methods. | |
void | FillInputTensor () |
Get the input event tensor for evaluation Internal function to fill the fXInput tensor with the correct shape from TMVA current Event class. | |
UInt_t | GetNumValidationSamples () |
parce the validation string and return the number of event data used for validation | |
void | Init () |
default initializations | |
void | ParseBatchLayout () |
Parse the input layout. | |
template<typename Architecture_t , typename Layer_t > | |
void | ParseBatchNormLayer (DNN::TDeepNet< Architecture_t, Layer_t > &deepNet, std::vector< DNN::TDeepNet< Architecture_t, Layer_t > > &nets, TString layerString, TString delim) |
Pases the layer string and creates the appropriate reshape layer. | |
template<typename Architecture_t , typename Layer_t > | |
void | ParseConvLayer (DNN::TDeepNet< Architecture_t, Layer_t > &deepNet, std::vector< DNN::TDeepNet< Architecture_t, Layer_t > > &nets, TString layerString, TString delim) |
Pases the layer string and creates the appropriate convolutional layer. | |
template<typename Architecture_t , typename Layer_t > | |
void | ParseDenseLayer (DNN::TDeepNet< Architecture_t, Layer_t > &deepNet, std::vector< DNN::TDeepNet< Architecture_t, Layer_t > > &nets, TString layerString, TString delim) |
Pases the layer string and creates the appropriate dense layer. | |
void | ParseInputLayout () |
Parse the input layout. | |
template<typename Architecture_t , typename Layer_t > | |
void | ParseMaxPoolLayer (DNN::TDeepNet< Architecture_t, Layer_t > &deepNet, std::vector< DNN::TDeepNet< Architecture_t, Layer_t > > &nets, TString layerString, TString delim) |
Pases the layer string and creates the appropriate max pool layer. | |
template<typename Architecture_t , typename Layer_t > | |
void | ParseRecurrentLayer (ERecurrentLayerType type, DNN::TDeepNet< Architecture_t, Layer_t > &deepNet, std::vector< DNN::TDeepNet< Architecture_t, Layer_t > > &nets, TString layerString, TString delim) |
Pases the layer string and creates the appropriate rnn layer. | |
template<typename Architecture_t , typename Layer_t > | |
void | ParseReshapeLayer (DNN::TDeepNet< Architecture_t, Layer_t > &deepNet, std::vector< DNN::TDeepNet< Architecture_t, Layer_t > > &nets, TString layerString, TString delim) |
Pases the layer string and creates the appropriate reshape layer. | |
template<typename Architecture_t > | |
std::vector< Double_t > | PredictDeepNet (Long64_t firstEvt, Long64_t lastEvt, size_t batchSize, Bool_t logProgress) |
perform prediction of the deep neural network using batches (called by GetMvaValues) | |
void | ProcessOptions () |
template<typename Architecture_t > | |
void | TrainDeepNet () |
train of deep neural network using the defined architecture | |
Private Attributes | |
TString | fArchitectureString |
The string defining the architecture: CPU or GPU. | |
size_t | fBatchDepth |
The depth of the batch used to train the deep net. | |
size_t | fBatchHeight |
The height of the batch used to train the deep net. | |
TString | fBatchLayoutString |
The string defining the layout of the batch. | |
size_t | fBatchWidth |
The width of the batch used to train the deep net. | |
bool | fBuildNet |
Flag to control whether to build fNet, the stored network used for the evaluation. | |
TString | fErrorStrategy |
The string defining the error strategy for training. | |
TString | fInputLayoutString |
The string defining the layout of the input. | |
std::vector< size_t > | fInputShape |
Contains the batch size (no. | |
TString | fLayoutString |
The string defining the layout of the deep net. | |
DNN::ELossFunction | fLossFunction |
The loss function. | |
std::unique_ptr< DeepNetImpl_t > | fNet |
TString | fNumValidationString |
The string defining the number (or percentage) of training data used for validation. | |
DNN::EOutputFunction | fOutputFunction |
The output function for making the predictions. | |
size_t | fRandomSeed |
The random seed used to initialize the weights and shuffling batches (default is zero) | |
bool | fResume |
KeyValueVector_t | fSettings |
Map for the training strategy. | |
std::vector< TTrainingSettings > | fTrainingSettings |
The vector defining each training strategy. | |
TString | fTrainingStrategyString |
The string defining the training strategy. | |
DNN::EInitialization | fWeightInitialization |
The initialization method. | |
TString | fWeightInitializationString |
The string defining the weight initialization method. | |
TensorImpl_t | fXInput |
HostBufferImpl_t | fXInputBuffer |
std::unique_ptr< MatrixImpl_t > | fYHat |
Additional Inherited Members | |
Public Types inherited from TMVA::MethodBase | |
enum | EWeightFileType { kROOT =0 , kTEXT } |
Public Types inherited from TObject | |
enum | { kIsOnHeap = 0x01000000 , kNotDeleted = 0x02000000 , kZombie = 0x04000000 , kInconsistent = 0x08000000 , kBitMask = 0x00ffffff } |
enum | { kSingleKey = (1ULL << ( 0 )) , kOverwrite = (1ULL << ( 1 )) , kWriteDelete = (1ULL << ( 2 )) } |
enum | EDeprecatedStatusBits { kObjInCanvas = (1ULL << ( 3 )) } |
enum | EStatusBits { kCanDelete = (1ULL << ( 0 )) , kMustCleanup = (1ULL << ( 3 )) , kIsReferenced = (1ULL << ( 4 )) , kHasUUID = (1ULL << ( 5 )) , kCannotPick = (1ULL << ( 6 )) , kNoContextMenu = (1ULL << ( 8 )) , kInvalidObject = (1ULL << ( 13 )) } |
Public Attributes inherited from TMVA::MethodBase | |
Bool_t | fSetupCompleted |
TrainingHistory | fTrainHistory |
Protected Types inherited from TObject | |
enum | { kOnlyPrepStep = (1ULL << ( 3 )) } |
Protected Attributes inherited from TMVA::MethodBase | |
Types::EAnalysisType | fAnalysisType |
UInt_t | fBackgroundClass |
bool | fExitFromTraining = false |
std::vector< TString > * | fInputVars |
IPythonInteractive * | fInteractive = nullptr |
temporary dataset used when evaluating on a different data (used by MethodCategory::GetMvaValues) | |
UInt_t | fIPyCurrentIter = 0 |
UInt_t | fIPyMaxIter = 0 |
std::vector< Float_t > * | fMulticlassReturnVal |
Int_t | fNbins |
Int_t | fNbinsH |
Int_t | fNbinsMVAoutput |
Ranking * | fRanking |
std::vector< Float_t > * | fRegressionReturnVal |
Results * | fResults |
UInt_t | fSignalClass |
DataSet * | fTmpData = nullptr |
temporary event when testing on a different DataSet than the own one | |
const Event * | fTmpEvent |
Protected Attributes inherited from TMVA::Configurable | |
MsgLogger * | fLogger |
! message logger | |
Protected Attributes inherited from TNamed | |
TString | fName |
TString | fTitle |
#include <TMVA/MethodDL.h>
|
private |
Definition at line 103 of file MethodDL.h.
|
private |
Definition at line 106 of file MethodDL.h.
|
private |
Definition at line 110 of file MethodDL.h.
|
private |
Definition at line 93 of file MethodDL.h.
|
private |
Definition at line 107 of file MethodDL.h.
|
private |
Definition at line 109 of file MethodDL.h.
|
private |
Definition at line 108 of file MethodDL.h.
|
private |
Enumerator | |
---|---|
kLayerRNN | |
kLayerLSTM | |
kLayerGRU |
Definition at line 153 of file MethodDL.h.
TMVA::MethodDL::MethodDL | ( | const TString & | jobName, |
const TString & | methodTitle, | ||
DataSetInfo & | theData, | ||
const TString & | theOption | ||
) |
TMVA::MethodDL::MethodDL | ( | DataSetInfo & | theData, |
const TString & | theWeightFile | ||
) |
|
virtual |
|
virtual |
Implements TMVA::MethodBase.
Definition at line 2051 of file MethodDL.cxx.
|
static |
|
inlinestaticconstexpr |
Definition at line 212 of file MethodDL.h.
|
private |
After calling the ProcesOptions(), all of the options are parsed, so using the parsed options, and given the architecture and the type of the layers, we build the Deep Network passed as a reference in the function.
Create a deep net based on the layout string.
Definition at line 529 of file MethodDL.cxx.
|
virtual |
Implements TMVA::MethodBase.
Definition at line 2335 of file MethodDL.cxx.
|
privatevirtual |
The option handling methods.
Implements TMVA::MethodBase.
Definition at line 167 of file MethodDL.cxx.
|
inlinestatic |
Definition at line 212 of file MethodDL.h.
|
private |
Get the input event tensor for evaluation Internal function to fill the fXInput tensor with the correct shape from TMVA current Event class.
Definition at line 1704 of file MethodDL.cxx.
|
inline |
Definition at line 278 of file MethodDL.h.
|
inline |
Definition at line 262 of file MethodDL.h.
|
inline |
Definition at line 263 of file MethodDL.h.
|
inline |
Definition at line 273 of file MethodDL.h.
|
inline |
Definition at line 261 of file MethodDL.h.
|
inline |
Definition at line 264 of file MethodDL.h.
|
inline |
Definition at line 266 of file MethodDL.h.
|
inline |
Definition at line 275 of file MethodDL.h.
|
protectedvirtual |
Implements TMVA::IMethod.
Definition at line 2342 of file MethodDL.cxx.
|
inline |
Definition at line 255 of file MethodDL.h.
|
inline |
Definition at line 258 of file MethodDL.h.
|
inline |
Definition at line 256 of file MethodDL.h.
|
inline |
Definition at line 272 of file MethodDL.h.
|
inline |
Definition at line 259 of file MethodDL.h.
|
inline |
Definition at line 257 of file MethodDL.h.
|
inline |
Definition at line 283 of file MethodDL.h.
|
inline |
Definition at line 282 of file MethodDL.h.
|
inline |
Definition at line 274 of file MethodDL.h.
|
inline |
Definition at line 270 of file MethodDL.h.
|
virtual |
Reimplemented from TMVA::MethodBase.
|
virtual |
Implements TMVA::MethodBase.
Definition at line 1772 of file MethodDL.cxx.
|
protectedvirtual |
Evaluate the DeepNet on a vector of input values stored in the TMVA Event class Here we will evaluate using a default batch size and the same architecture used for Training.
Reimplemented from TMVA::MethodBase.
Definition at line 2022 of file MethodDL.cxx.
|
private |
parce the validation string and return the number of event data used for validation
|
inline |
Definition at line 269 of file MethodDL.h.
|
virtual |
Reimplemented from TMVA::MethodBase.
|
inline |
Definition at line 281 of file MethodDL.h.
|
inline |
Definition at line 280 of file MethodDL.h.
|
inline |
Definition at line 276 of file MethodDL.h.
|
inline |
Definition at line 268 of file MethodDL.h.
|
inline |
Definition at line 277 of file MethodDL.h.
|
virtual |
Check the type of analysis the deep learning network can do.
What kind of analysis type can handle the CNN.
Implements TMVA::IMethod.
Definition at line 1091 of file MethodDL.cxx.
|
privatevirtual |
|
inlinevirtual |
Reimplemented from TMVA::MethodBase.
Definition at line 212 of file MethodDL.h.
|
private |
Parse the input layout.
Definition at line 482 of file MethodDL.cxx.
|
private |
Pases the layer string and creates the appropriate reshape layer.
Definition at line 890 of file MethodDL.cxx.
|
private |
Pases the layer string and creates the appropriate convolutional layer.
Definition at line 669 of file MethodDL.cxx.
|
private |
Pases the layer string and creates the appropriate dense layer.
Definition at line 583 of file MethodDL.cxx.
|
private |
Parse the input layout.
Definition at line 439 of file MethodDL.cxx.
auto TMVA::MethodDL::ParseKeyValueString | ( | TString | parseString, |
TString | blockDelim, | ||
TString | tokenDelim | ||
) |
Function for parsing the training settings, provided as a string in a key-value form.
Parse key value pairs in blocks -> return vector of blocks with map of key value pairs.
Definition at line 1052 of file MethodDL.cxx.
|
private |
Pases the layer string and creates the appropriate max pool layer.
Definition at line 768 of file MethodDL.cxx.
|
private |
Pases the layer string and creates the appropriate rnn layer.
Definition at line 931 of file MethodDL.cxx.
|
private |
Pases the layer string and creates the appropriate reshape layer.
Definition at line 829 of file MethodDL.cxx.
|
private |
perform prediction of the deep neural network using batches (called by GetMvaValues)
Evaluate the DeepNet on a vector of input values stored in the TMVA Event class.
Definition at line 1828 of file MethodDL.cxx.
|
privatevirtual |
Implements TMVA::MethodBase.
Definition at line 219 of file MethodDL.cxx.
|
virtual |
Implements TMVA::MethodBase.
Definition at line 2330 of file MethodDL.cxx.
|
virtual |
Methods for writing and reading weights.
Implements TMVA::MethodBase.
|
inlinevirtual |
Methods for writing and reading weights.
Reimplemented from TMVA::MethodBase.
Definition at line 266 of file MethodBase.h.
|
virtual |
Implements TMVA::MethodBase.
Definition at line 2112 of file MethodDL.cxx.
|
inline |
Definition at line 307 of file MethodDL.h.
|
inline |
Definition at line 292 of file MethodDL.h.
|
inline |
Definition at line 293 of file MethodDL.h.
|
inline |
Definition at line 291 of file MethodDL.h.
|
inline |
Definition at line 294 of file MethodDL.h.
|
inline |
Definition at line 301 of file MethodDL.h.
|
inline |
Setters.
Definition at line 286 of file MethodDL.h.
|
inline |
Definition at line 287 of file MethodDL.h.
|
inline |
Definition at line 289 of file MethodDL.h.
|
inline |
Definition at line 288 of file MethodDL.h.
|
inline |
Definition at line 308 of file MethodDL.h.
|
inline |
Definition at line 300 of file MethodDL.h.
|
inline |
Definition at line 302 of file MethodDL.h.
|
inline |
Definition at line 296 of file MethodDL.h.
|
inline |
Definition at line 303 of file MethodDL.h.
|
virtual |
Reimplemented from TMVA::MethodBase.
|
inline |
Definition at line 212 of file MethodDL.h.
|
virtual |
Methods for training the deep learning network.
Implements TMVA::MethodBase.
Definition at line 1659 of file MethodDL.cxx.
|
private |
train of deep neural network using the defined architecture
Implementation of architecture specific train method.
Definition at line 1164 of file MethodDL.cxx.
|
private |
The string defining the architecture: CPU or GPU.
Definition at line 198 of file MethodDL.h.
|
private |
The depth of the batch used to train the deep net.
Definition at line 182 of file MethodDL.h.
|
private |
The height of the batch used to train the deep net.
Definition at line 183 of file MethodDL.h.
|
private |
The string defining the layout of the batch.
Definition at line 193 of file MethodDL.h.
|
private |
The width of the batch used to train the deep net.
Definition at line 184 of file MethodDL.h.
|
private |
Flag to control whether to build fNet, the stored network used for the evaluation.
Definition at line 201 of file MethodDL.h.
|
private |
The string defining the error strategy for training.
Definition at line 195 of file MethodDL.h.
|
private |
The string defining the layout of the input.
Definition at line 192 of file MethodDL.h.
|
private |
Contains the batch size (no.
of images in the batch), input depth (no. channels) and further input dimensions of the data (image height, width ...)
Definition at line 178 of file MethodDL.h.
|
private |
The string defining the layout of the deep net.
Definition at line 194 of file MethodDL.h.
|
private |
The loss function.
Definition at line 190 of file MethodDL.h.
|
private |
Definition at line 209 of file MethodDL.h.
|
private |
The string defining the number (or percentage) of training data used for validation.
Definition at line 199 of file MethodDL.h.
|
private |
The output function for making the predictions.
Definition at line 189 of file MethodDL.h.
|
private |
The random seed used to initialize the weights and shuffling batches (default is zero)
Definition at line 186 of file MethodDL.h.
|
private |
Definition at line 200 of file MethodDL.h.
|
private |
Map for the training strategy.
Definition at line 203 of file MethodDL.h.
|
private |
The vector defining each training strategy.
Definition at line 204 of file MethodDL.h.
|
private |
The string defining the training strategy.
Definition at line 196 of file MethodDL.h.
|
private |
The initialization method.
Definition at line 188 of file MethodDL.h.
|
private |
The string defining the weight initialization method.
Definition at line 197 of file MethodDL.h.
|
private |
Definition at line 206 of file MethodDL.h.
|
private |
Definition at line 207 of file MethodDL.h.
|
private |
Definition at line 208 of file MethodDL.h.