Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
TMVA::DTNodeTrainingInfo Class Reference

Definition at line 51 of file DecisionTreeNode.h.

Public Member Functions

 DTNodeTrainingInfo ()
 
 DTNodeTrainingInfo (const DTNodeTrainingInfo &n)
 

Public Attributes

Double_t fAlpha
 critical alpha for this node
 
Double_t fCC
 debug variable for cost complexity pruning ..
 
Double_t fG
 minimum alpha in subtree rooted at this node
 
Double_t fNB
 sum of weights of background events from the pruning sample in this node
 
Float_t fNBkgEvents
 sum of weights of backgr event in the node
 
Float_t fNBkgEvents_unboosted
 sum of backgr event in the node
 
Float_t fNBkgEvents_unweighted
 sum of backgr event in the node
 
Float_t fNEvents
 number of events in that entered the node (during training)
 
Float_t fNEvents_unboosted
 number of events in that entered the node (during training)
 
Float_t fNEvents_unweighted
 number of events in that entered the node (during training)
 
Double_t fNodeR
 node resubstitution estimate, R(t)
 
Double_t fNS
 ditto for the signal events
 
Float_t fNSigEvents
 sum of weights of signal event in the node
 
Float_t fNSigEvents_unboosted
 sum of signal event in the node
 
Float_t fNSigEvents_unweighted
 sum of signal event in the node
 
Int_t fNTerminal
 number of terminal nodes in subtree rooted at this node
 
std::vector< Float_tfSampleMax
 the maxima for each ivar of the sample on the node during training
 
std::vector< Float_tfSampleMin
 the minima for each ivar of the sample on the node during training
 
Float_t fSeparationGain
 measure of "purity", separation, or information gained BY this nodes selection
 
Float_t fSeparationIndex
 measure of "purity" (separation between S and B) AT this node
 
Double_t fSubTreeR
 R(T) = Sum(R(t) : t in ~T)
 
Float_t fSumTarget
 sum of weight*target used for the calculation of the variance (regression)
 
Float_t fSumTarget2
 sum of weight*target^2 used for the calculation of the variance (regression)
 

#include <TMVA/DecisionTreeNode.h>

Constructor & Destructor Documentation

◆ DTNodeTrainingInfo() [1/2]

TMVA::DTNodeTrainingInfo::DTNodeTrainingInfo ( )
inline

Definition at line 54 of file DecisionTreeNode.h.

◆ DTNodeTrainingInfo() [2/2]

TMVA::DTNodeTrainingInfo::DTNodeTrainingInfo ( const DTNodeTrainingInfo n)
inline

Definition at line 96 of file DecisionTreeNode.h.

Member Data Documentation

◆ fAlpha

Double_t TMVA::DTNodeTrainingInfo::fAlpha

critical alpha for this node

Definition at line 74 of file DecisionTreeNode.h.

◆ fCC

Double_t TMVA::DTNodeTrainingInfo::fCC

debug variable for cost complexity pruning ..

Definition at line 81 of file DecisionTreeNode.h.

◆ fG

Double_t TMVA::DTNodeTrainingInfo::fG

minimum alpha in subtree rooted at this node

Definition at line 75 of file DecisionTreeNode.h.

◆ fNB

Double_t TMVA::DTNodeTrainingInfo::fNB

sum of weights of background events from the pruning sample in this node

Definition at line 77 of file DecisionTreeNode.h.

◆ fNBkgEvents

Float_t TMVA::DTNodeTrainingInfo::fNBkgEvents

sum of weights of backgr event in the node

Definition at line 84 of file DecisionTreeNode.h.

◆ fNBkgEvents_unboosted

Float_t TMVA::DTNodeTrainingInfo::fNBkgEvents_unboosted

sum of backgr event in the node

Definition at line 90 of file DecisionTreeNode.h.

◆ fNBkgEvents_unweighted

Float_t TMVA::DTNodeTrainingInfo::fNBkgEvents_unweighted

sum of backgr event in the node

Definition at line 87 of file DecisionTreeNode.h.

◆ fNEvents

Float_t TMVA::DTNodeTrainingInfo::fNEvents

number of events in that entered the node (during training)

Definition at line 85 of file DecisionTreeNode.h.

◆ fNEvents_unboosted

Float_t TMVA::DTNodeTrainingInfo::fNEvents_unboosted

number of events in that entered the node (during training)

Definition at line 91 of file DecisionTreeNode.h.

◆ fNEvents_unweighted

Float_t TMVA::DTNodeTrainingInfo::fNEvents_unweighted

number of events in that entered the node (during training)

Definition at line 88 of file DecisionTreeNode.h.

◆ fNodeR

Double_t TMVA::DTNodeTrainingInfo::fNodeR

node resubstitution estimate, R(t)

Definition at line 72 of file DecisionTreeNode.h.

◆ fNS

Double_t TMVA::DTNodeTrainingInfo::fNS

ditto for the signal events

Definition at line 78 of file DecisionTreeNode.h.

◆ fNSigEvents

Float_t TMVA::DTNodeTrainingInfo::fNSigEvents

sum of weights of signal event in the node

Definition at line 83 of file DecisionTreeNode.h.

◆ fNSigEvents_unboosted

Float_t TMVA::DTNodeTrainingInfo::fNSigEvents_unboosted

sum of signal event in the node

Definition at line 89 of file DecisionTreeNode.h.

◆ fNSigEvents_unweighted

Float_t TMVA::DTNodeTrainingInfo::fNSigEvents_unweighted

sum of signal event in the node

Definition at line 86 of file DecisionTreeNode.h.

◆ fNTerminal

Int_t TMVA::DTNodeTrainingInfo::fNTerminal

number of terminal nodes in subtree rooted at this node

Definition at line 76 of file DecisionTreeNode.h.

◆ fSampleMax

std::vector< Float_t > TMVA::DTNodeTrainingInfo::fSampleMax

the maxima for each ivar of the sample on the node during training

Definition at line 71 of file DecisionTreeNode.h.

◆ fSampleMin

std::vector< Float_t > TMVA::DTNodeTrainingInfo::fSampleMin

the minima for each ivar of the sample on the node during training

Definition at line 70 of file DecisionTreeNode.h.

◆ fSeparationGain

Float_t TMVA::DTNodeTrainingInfo::fSeparationGain

measure of "purity", separation, or information gained BY this nodes selection

Definition at line 93 of file DecisionTreeNode.h.

◆ fSeparationIndex

Float_t TMVA::DTNodeTrainingInfo::fSeparationIndex

measure of "purity" (separation between S and B) AT this node

Definition at line 92 of file DecisionTreeNode.h.

◆ fSubTreeR

Double_t TMVA::DTNodeTrainingInfo::fSubTreeR

R(T) = Sum(R(t) : t in ~T)

Definition at line 73 of file DecisionTreeNode.h.

◆ fSumTarget

Float_t TMVA::DTNodeTrainingInfo::fSumTarget

sum of weight*target used for the calculation of the variance (regression)

Definition at line 79 of file DecisionTreeNode.h.

◆ fSumTarget2

Float_t TMVA::DTNodeTrainingInfo::fSumTarget2

sum of weight*target^2 used for the calculation of the variance (regression)

Definition at line 80 of file DecisionTreeNode.h.

Libraries for TMVA::DTNodeTrainingInfo:

The documentation for this class was generated from the following file: