Settings for classificationused to distinguish between different function signatures.
contains additional settings if the DNN problem is classification
Definition at line 894 of file NeuralNet.h.
Public Member Functions | |
ClassificationSettings (TString name, size_t _convergenceSteps=15, size_t _batchSize=10, size_t _testRepetitions=7, double _factorWeightDecay=1e-5, EnumRegularization _regularization=EnumRegularization::NONE, size_t _scaleToNumEvents=0, MinimizerType _eMinimizerType=MinimizerType::fSteepest, double _learningRate=1e-5, double _momentum=0.3, int _repetitions=3, bool _useMultithreading=true) | |
c'tor | |
virtual | ~ClassificationSettings () |
d'tor | |
virtual void | endTestCycle () |
action to be done when the training cycle is ended (e.g. | |
void | endTrainCycle (double) |
action to be done when the training cycle is ended (e.g. | |
void | setResultComputation (std::string _fileNameNetConfig, std::string _fileNameResult, std::vector< Pattern > *_resultPatternContainer) |
preparation for monitoring output | |
void | setWeightSums (double sumOfSigWeights, double sumOfBkgWeights) |
set the weight sums to be scaled to (preparations for monitoring output) | |
virtual void | startTestCycle () |
action to be done when the test cycle is started (e.g. | |
void | startTrainCycle () |
action to be done when the training cycle is started (e.g. | |
void | testIteration () |
callback for monitoring and loggging | |
void | testSample (double error, double output, double target, double weight) |
action to be done after the computation of a test sample (e.g. | |
Public Member Functions inherited from TMVA::DNN::Settings | |
Settings (TString name, size_t _convergenceSteps=15, size_t _batchSize=10, size_t _testRepetitions=7, double _factorWeightDecay=1e-5, TMVA::DNN::EnumRegularization _regularization=TMVA::DNN::EnumRegularization::NONE, MinimizerType _eMinimizerType=MinimizerType::fSteepest, double _learningRate=1e-5, double _momentum=0.3, int _repetitions=3, bool _multithreading=true) | |
c'tor | |
virtual | ~Settings () |
d'tor | |
void | addPoint (std::string histoName, double x) |
for monitoring | |
void | addPoint (std::string histoName, double x, double y) |
for monitoring | |
size_t | batchSize () const |
mini-batch size | |
void | clear (std::string histoName) |
for monitoring | |
virtual void | computeResult (const Net &, std::vector< double > &) |
callback for monitoring and logging | |
size_t | convergenceCount () const |
returns the current convergence count | |
size_t | convergenceSteps () const |
how many steps until training is deemed to have converged | |
void | create (std::string histoName, int bins, double min, double max) |
for monitoring | |
void | create (std::string histoName, int bins, double min, double max, int bins2, double min2, double max2) |
for monitoring | |
virtual void | cycle (double progress, TString text) |
virtual void | drawSample (const std::vector< double > &, const std::vector< double > &, const std::vector< double > &, double) |
callback for monitoring and logging | |
const std::vector< double > & | dropFractions () const |
size_t | dropRepetitions () const |
bool | exists (std::string histoName) |
for monitoring | |
double | factorWeightDecay () const |
get the weight-decay factor | |
virtual bool | hasConverged (double testError) |
has this training converged already? | |
double | learningRate () const |
get the learning rate | |
size_t | maxConvergenceCount () const |
returns the max convergence count so far | |
size_t | minError () const |
returns the smallest error so far | |
MinimizerType | minimizerType () const |
which minimizer shall be used (e.g. SGD) | |
double | momentum () const |
get the momentum (e.g. for SGD) | |
void | pads (int numPads) |
preparation for monitoring | |
void | plot (std::string histoName, std::string options, int pad, EColor color) |
for monitoring | |
EnumRegularization | regularization () const |
some regularization of the DNN is turned on? | |
int | repetitions () const |
how many steps have to be gone until the batch is changed | |
template<typename Iterator > | |
void | setDropOut (Iterator begin, Iterator end, size_t _dropRepetitions) |
set the drop-out configuration (layer-wise) | |
void | setMonitoring (std::shared_ptr< Monitoring > ptrMonitoring) |
prepared for monitoring | |
virtual void | setProgressLimits (double minProgress=0, double maxProgress=100) |
virtual void | startTraining () |
size_t | testRepetitions () const |
how often is the test data tested | |
bool | useMultithreading () const |
is multithreading turned on? | |
Additional Inherited Members | |
Protected Attributes inherited from TMVA::DNN::Settings | |
std::shared_ptr< Monitoring > | fMonitoring |
bool | m_useMultithreading |
#include <TMVA/NeuralNet.h>
|
inline |
c'tor
Definition at line 901 of file NeuralNet.h.
|
inlinevirtual |
d'tor
Definition at line 924 of file NeuralNet.h.
|
virtual |
action to be done when the training cycle is ended (e.g.
update some monitoring output)
Reimplemented from TMVA::DNN::Settings.
Definition at line 326 of file NeuralNet.cxx.
|
virtual |
action to be done when the training cycle is ended (e.g.
update some monitoring output)
Reimplemented from TMVA::DNN::Settings.
Definition at line 296 of file NeuralNet.cxx.
void TMVA::DNN::ClassificationSettings::setResultComputation | ( | std::string | _fileNameNetConfig, |
std::string | _fileNameResult, | ||
std::vector< Pattern > * | _resultPatternContainer | ||
) |
preparation for monitoring output
Definition at line 520 of file NeuralNet.cxx.
void TMVA::DNN::ClassificationSettings::setWeightSums | ( | double | sumOfSigWeights, |
double | sumOfBkgWeights | ||
) |
set the weight sums to be scaled to (preparations for monitoring output)
Definition at line 512 of file NeuralNet.cxx.
|
virtual |
action to be done when the test cycle is started (e.g.
update some monitoring output)
Reimplemented from TMVA::DNN::Settings.
Definition at line 316 of file NeuralNet.cxx.
|
virtual |
action to be done when the training cycle is started (e.g.
update some monitoring output)
Reimplemented from TMVA::DNN::Settings.
Definition at line 281 of file NeuralNet.cxx.
|
inlinevirtual |
callback for monitoring and loggging
Reimplemented from TMVA::DNN::Settings.
Definition at line 930 of file NeuralNet.h.
|
virtual |
action to be done after the computation of a test sample (e.g.
update some monitoring output)
Reimplemented from TMVA::DNN::Settings.
Definition at line 304 of file NeuralNet.cxx.
std::vector<double> TMVA::DNN::ClassificationSettings::m_ams |
Definition at line 1000 of file NeuralNet.h.
double TMVA::DNN::ClassificationSettings::m_cutValue |
Definition at line 1008 of file NeuralNet.h.
std::string TMVA::DNN::ClassificationSettings::m_fileNameNetConfig |
Definition at line 1011 of file NeuralNet.h.
std::string TMVA::DNN::ClassificationSettings::m_fileNameResult |
Definition at line 1010 of file NeuralNet.h.
std::vector<double> TMVA::DNN::ClassificationSettings::m_input |
Definition at line 995 of file NeuralNet.h.
std::vector<double> TMVA::DNN::ClassificationSettings::m_output |
Definition at line 996 of file NeuralNet.h.
std::vector<Pattern>* TMVA::DNN::ClassificationSettings::m_pResultPatternContainer |
Definition at line 1009 of file NeuralNet.h.
size_t TMVA::DNN::ClassificationSettings::m_scaleToNumEvents |
Definition at line 1006 of file NeuralNet.h.
std::vector<double> TMVA::DNN::ClassificationSettings::m_significances |
Definition at line 1001 of file NeuralNet.h.
double TMVA::DNN::ClassificationSettings::m_sumOfBkgWeights |
Definition at line 1005 of file NeuralNet.h.
double TMVA::DNN::ClassificationSettings::m_sumOfSigWeights |
Definition at line 1004 of file NeuralNet.h.
std::vector<double> TMVA::DNN::ClassificationSettings::m_targets |
Definition at line 997 of file NeuralNet.h.
std::vector<double> TMVA::DNN::ClassificationSettings::m_weights |
Definition at line 998 of file NeuralNet.h.