SMatrix: a generic fixed size D1 x D2 Matrix class.
The class is template on the scalar type, on the matrix sizes: D1 = number of rows and D2 = number of columns amd on the representation storage type. By default the representation is MatRepStd<T,D1,D2> (standard D1xD2 of type T), but it can be of type MatRepSym<T,D> for symmetric matrices DxD, where the storage is only D*(D+1)/2.
Original author is Thorsten Glebe HERA-B Collaboration, MPI Heidelberg (Germany)
Classes | |
class | SMatrixRow |
class | SMatrixRow_const |
Public Types | |
— Matrix dimension — | |
enum | { kRows = D1 , kCols = D2 , kSize = D1*D2 } |
Enumeration defining the matrix dimension, number of rows, columns and size = rows*columns) More... | |
— Typedefs — | |
typedef T | value_type |
contained scalar type | |
typedef R | rep_type |
storage representation type | |
typedef T * | iterator |
STL iterator interface. | |
typedef const T * | const_iterator |
STL const_iterator interface. | |
Public Member Functions | |
— Constructors and Assignment — | |
SMatrix () | |
Default constructor: | |
SMatrix (SMatrixNoInit) | |
construct from without initialization | |
SMatrix (SMatrixIdentity) | |
construct from an identity matrix | |
SMatrix (const SMatrix< T, D1, D2, R > &rhs) | |
copy constructor (from a matrix of the same representation | |
template<class R2 > | |
SMatrix (const SMatrix< T, D1, D2, R2 > &rhs) | |
construct from a matrix with different representation. | |
template<class A , class R2 > | |
SMatrix (const Expr< A, T, D1, D2, R2 > &rhs) | |
Construct from an expression. | |
template<class InputIterator > | |
SMatrix (InputIterator begin, InputIterator end, bool triang=false, bool lower=true) | |
Constructor with STL iterator interface. | |
template<class InputIterator > | |
SMatrix (InputIterator begin, unsigned int size, bool triang=false, bool lower=true) | |
Constructor with STL iterator interface. | |
SMatrix (const SVector< T, D1 *(D2+1)/2 > &v, bool lower=true) | |
constructor of a symmetrix a matrix from a SVector containing the lower (upper) triangular part. | |
SMatrix (const T &rhs) | |
Construct from a scalar value (only for size 1 matrices) | |
template<class M > | |
SMatrix< T, D1, D2, R > & | operator= (const M &rhs) |
Assign from another compatible matrix. | |
SMatrix< T, D1, D2, R > & | operator= (const SMatrix< T, D1, D2, R > &rhs) |
template<class A , class R2 > | |
SMatrix< T, D1, D2, R > & | operator= (const Expr< A, T, D1, D2, R2 > &rhs) |
Assign from a matrix expression. | |
SMatrix< T, D1, D2, R > & | operator= (SMatrixIdentity) |
Assign from an identity matrix. | |
SMatrix< T, D1, D2, R > & | operator= (const T &rhs) |
Assign from a scalar value (only for size 1 matrices) | |
— Access functions — | |
T | apply (unsigned int i) const |
access the parse tree with the index starting from zero and following the C convention for the order in accessing the matrix elements. | |
const T * | Array () const |
return read-only pointer to internal array | |
T * | Array () |
return pointer to internal array | |
— STL-like interface — | |
The iterators access the matrix element in the order how they are stored in memory. The C (row-major) convention is used, and in the case of symmetric matrices the iterator spans only the lower diagonal block. For example for a symmetric 3x3 matrices the order of the 6 elements \({a_0,...a_5}\) is: \[ M = \left( \begin{array}{ccc} a_0 & a_1 & a_3 \\ a_1 & a_2 & a_4 \\ a_3 & a_4 & a_5 \end{array} \right) \] | |
iterator | begin () |
STL iterator interface. | |
iterator | end () |
STL iterator interface. | |
const_iterator | begin () const |
STL const_iterator interface. | |
const_iterator | end () const |
STL const_iterator interface. | |
template<class InputIterator > | |
void | SetElements (InputIterator begin, InputIterator end, bool triang=false, bool lower=true) |
Set matrix elements with STL iterator interface. | |
template<class InputIterator > | |
void | SetElements (InputIterator begin, unsigned int size, bool triang=false, bool lower=true) |
Constructor with STL iterator interface. | |
— Operators — | |
bool | operator== (const T &rhs) const |
element wise comparison | |
bool | operator!= (const T &rhs) const |
element wise comparison | |
template<class R2 > | |
bool | operator== (const SMatrix< T, D1, D2, R2 > &rhs) const |
element wise comparison | |
bool | operator!= (const SMatrix< T, D1, D2, R > &rhs) const |
element wise comparison | |
template<class A , class R2 > | |
bool | operator== (const Expr< A, T, D1, D2, R2 > &rhs) const |
element wise comparison | |
template<class A , class R2 > | |
bool | operator!= (const Expr< A, T, D1, D2, R2 > &rhs) const |
element wise comparison | |
bool | operator> (const T &rhs) const |
element wise comparison | |
bool | operator< (const T &rhs) const |
element wise comparison | |
template<class R2 > | |
bool | operator> (const SMatrix< T, D1, D2, R2 > &rhs) const |
element wise comparison | |
template<class R2 > | |
bool | operator< (const SMatrix< T, D1, D2, R2 > &rhs) const |
element wise comparison | |
template<class A , class R2 > | |
bool | operator> (const Expr< A, T, D1, D2, R2 > &rhs) const |
element wise comparison | |
template<class A , class R2 > | |
bool | operator< (const Expr< A, T, D1, D2, R2 > &rhs) const |
element wise comparison | |
const T & | operator() (unsigned int i, unsigned int j) const |
read only access to matrix element, with indices starting from 0 | |
T & | operator() (unsigned int i, unsigned int j) |
read/write access to matrix element with indices starting from 0 | |
const T & | At (unsigned int i, unsigned int j) const |
read only access to matrix element, with indices starting from 0. | |
T & | At (unsigned int i, unsigned int j) |
read/write access to matrix element with indices starting from 0. | |
SMatrixRow_const | operator[] (unsigned int i) const |
read only access to matrix element, with indices starting from 0 : m[i][j] | |
SMatrixRow | operator[] (unsigned int i) |
read/write access to matrix element with indices starting from 0 : m[i][j] | |
SMatrix< T, D1, D2, R > & | operator+= (const T &rhs) |
addition with a scalar | |
template<class R2 > | |
SMatrix< T, D1, D2, R > & | operator+= (const SMatrix< T, D1, D2, R2 > &rhs) |
addition with another matrix of any compatible representation | |
template<class A , class R2 > | |
SMatrix< T, D1, D2, R > & | operator+= (const Expr< A, T, D1, D2, R2 > &rhs) |
addition with a compatible matrix expression | |
SMatrix< T, D1, D2, R > & | operator-= (const T &rhs) |
subtraction with a scalar | |
template<class R2 > | |
SMatrix< T, D1, D2, R > & | operator-= (const SMatrix< T, D1, D2, R2 > &rhs) |
subtraction with another matrix of any compatible representation | |
template<class A , class R2 > | |
SMatrix< T, D1, D2, R > & | operator-= (const Expr< A, T, D1, D2, R2 > &rhs) |
subtraction with a compatible matrix expression | |
SMatrix< T, D1, D2, R > & | operator*= (const T &rhs) |
multiplication with a scalar | |
template<class R2 > | |
SMatrix< T, D1, D2, R > & | operator*= (const SMatrix< T, D1, D2, R2 > &rhs) |
multiplication with another compatible matrix (it is a real matrix multiplication) Note that this operation does not avid to create a temporary to store intermidiate result | |
template<class A , class R2 > | |
SMatrix< T, D1, D2, R > & | operator*= (const Expr< A, T, D1, D2, R2 > &rhs) |
multiplication with a compatible matrix expression (it is a real matrix multiplication) | |
SMatrix< T, D1, D2, R > & | operator/= (const T &rhs) |
division with a scalar | |
— Linear Algebra Functions — | |
bool | Invert () |
Invert a square Matrix ( this method changes the current matrix). | |
SMatrix< T, D1, D2, R > | Inverse (int &ifail) const |
Invert a square Matrix and returns a new matrix. | |
bool | InvertFast () |
Fast Invertion of a square Matrix ( this method changes the current matrix). | |
SMatrix< T, D1, D2, R > | InverseFast (int &ifail) const |
Invert a square Matrix and returns a new matrix. | |
bool | InvertChol () |
Invertion of a symmetric positive defined Matrix using Choleski decomposition. | |
SMatrix< T, D1, D2, R > | InverseChol (int &ifail) const |
Invert of a symmetric positive defined Matrix using Choleski decomposition. | |
bool | Det (T &det) |
determinant of square Matrix via Dfact. | |
bool | Det2 (T &det) const |
determinant of square Matrix via Dfact. | |
— Matrix Slice Functions — | |
template<unsigned int D> | |
SMatrix< T, D1, D2, R > & | Place_in_row (const SVector< T, D > &rhs, unsigned int row, unsigned int col) |
place a vector in a Matrix row | |
template<class A , unsigned int D> | |
SMatrix< T, D1, D2, R > & | Place_in_row (const VecExpr< A, T, D > &rhs, unsigned int row, unsigned int col) |
place a vector expression in a Matrix row | |
template<unsigned int D> | |
SMatrix< T, D1, D2, R > & | Place_in_col (const SVector< T, D > &rhs, unsigned int row, unsigned int col) |
place a vector in a Matrix column | |
template<class A , unsigned int D> | |
SMatrix< T, D1, D2, R > & | Place_in_col (const VecExpr< A, T, D > &rhs, unsigned int row, unsigned int col) |
place a vector expression in a Matrix column | |
template<unsigned int D3, unsigned int D4, class R2 > | |
SMatrix< T, D1, D2, R > & | Place_at (const SMatrix< T, D3, D4, R2 > &rhs, unsigned int row, unsigned int col) |
place a matrix in this matrix | |
template<class A , unsigned int D3, unsigned int D4, class R2 > | |
SMatrix< T, D1, D2, R > & | Place_at (const Expr< A, T, D3, D4, R2 > &rhs, unsigned int row, unsigned int col) |
place a matrix expression in this matrix | |
SVector< T, D2 > | Row (unsigned int therow) const |
return a full Matrix row as a vector (copy the content in a new vector) | |
SVector< T, D1 > | Col (unsigned int thecol) const |
return a full Matrix column as a vector (copy the content in a new vector) | |
template<class SubVector > | |
SubVector | SubRow (unsigned int therow, unsigned int col0=0) const |
return a slice of therow as a vector starting at the colum value col0 until col0+N, where N is the size of the vector (SVector::kSize ) Condition col0+N <= D2 | |
template<class SubVector > | |
SubVector | SubCol (unsigned int thecol, unsigned int row0=0) const |
return a slice of the column as a vector starting at the row value row0 until row0+Dsub. | |
template<class SubMatrix > | |
SubMatrix | Sub (unsigned int row0, unsigned int col0) const |
return a submatrix with the upper left corner at the values (row0, col0) and with sizes N1, N2 where N1 and N2 are the dimension of the sub-matrix (SubMatrix::kRows and SubMatrix::kCols ) Condition row0+N1 <= D1 && col0+N2 <=D2 | |
SVector< T, D1 > | Diagonal () const |
return diagonal elements of a matrix as a Vector. | |
template<class Vector > | |
void | SetDiagonal (const Vector &v) |
Set the diagonal elements from a Vector Require that vector implements SVector::kSize since a check (statically) is done on diagonal size == vector size. | |
T | Trace () const |
return the trace of a matrix Sum of the diagonal elements | |
SVector< T, D1 *(D2+1)/2 > | UpperBlock () const |
return the upper Triangular block of the matrices (including the diagonal) as a vector of sizes N = D1 * (D1 + 1)/2. | |
SVector< T, D1 *(D2+1)/2 > | LowerBlock () const |
return the lower Triangular block of the matrices (including the diagonal) as a vector of sizes N = D1 * (D1 + 1)/2. | |
— Other Functions — | |
bool | IsInUse (const T *p) const |
Function to check if a matrix is sharing same memory location of the passed pointer This function is used by the expression templates to avoid the alias problem during expression evaluation. | |
std::ostream & | Print (std::ostream &os) const |
Print: used by operator<<() | |
Public Attributes | |
— Data Member — | |
R | fRep |
Matrix Storage Object containing matrix data. | |
#include <Math/SMatrix.h>
typedef const T* ROOT::Math::SMatrix< T, D1, D2, R >::const_iterator |
typedef T* ROOT::Math::SMatrix< T, D1, D2, R >::iterator |
typedef R ROOT::Math::SMatrix< T, D1, D2, R >::rep_type |
typedef T ROOT::Math::SMatrix< T, D1, D2, R >::value_type |
anonymous enum |
ROOT::Math::SMatrix< T, D1, D2, R >::SMatrix |
Default constructor:
Definition at line 72 of file SMatrix.icc.
|
inline |
ROOT::Math::SMatrix< T, D1, D2, R >::SMatrix | ( | SMatrixIdentity | ) |
construct from an identity matrix
Definition at line 79 of file SMatrix.icc.
ROOT::Math::SMatrix< T, D1, D2, R >::SMatrix | ( | const SMatrix< T, D1, D2, R > & | rhs | ) |
copy constructor (from a matrix of the same representation
Definition at line 93 of file SMatrix.icc.
ROOT::Math::SMatrix< T, D1, D2, R >::SMatrix | ( | const SMatrix< T, D1, D2, R2 > & | rhs | ) |
construct from a matrix with different representation.
Works only from symmetric to general and not viceversa.
Definition at line 100 of file SMatrix.icc.
ROOT::Math::SMatrix< T, D1, D2, R >::SMatrix | ( | const Expr< A, T, D1, D2, R2 > & | rhs | ) |
Construct from an expression.
In case of symmetric matrices does not work if expression is of type general matrices. In case one needs to force the assignment from general to symmetric, one can use the ROOT::Math::AssignSym::Evaluate function.
Definition at line 107 of file SMatrix.icc.
ROOT::Math::SMatrix< T, D1, D2, R >::SMatrix | ( | InputIterator | begin, |
InputIterator | end, | ||
bool | triang = false , |
||
bool | lower = true |
||
) |
Constructor with STL iterator interface.
The data will be copied into the matrix
begin | start iterator position |
end | end iterator position |
triang | if true only the triangular lower/upper part of the matrix is filled from the iterators |
lower | if true the lower triangular part is filled |
Size of the matrix must match size of the iterators, if triang is false, otherwise the size of the triangular block. In the case of symmetric matrices triang is considered always to be true (what-ever the user specifies) and the size of the iterators must be equal to the size of the triangular block, which is the number of independent elements of a symmetric matrix: N*(N+1)/2
Definition at line 117 of file SMatrix.icc.
ROOT::Math::SMatrix< T, D1, D2, R >::SMatrix | ( | InputIterator | begin, |
unsigned int | size, | ||
bool | triang = false , |
||
bool | lower = true |
||
) |
Constructor with STL iterator interface.
The data will be copied into the matrix
begin | start iterator position |
size | iterator size |
triang | if true only the triangular lower/upper part of the matrix is filled from the iterators |
lower | if true the lower triangular part is filled |
Size of the iterators must not be larger than the size of the matrix representation. In the case of symmetric matrices the size is N*(N+1)/2.
Definition at line 125 of file SMatrix.icc.
ROOT::Math::SMatrix< T, D1, D2, R >::SMatrix | ( | const SVector< T, D1 *(D2+1)/2 > & | v, |
bool | lower = true |
||
) |
constructor of a symmetrix a matrix from a SVector containing the lower (upper) triangular part.
construct from upper/lower block
Definition at line 858 of file SMatrix.icc.
|
explicit |
Construct from a scalar value (only for size 1 matrices)
Definition at line 138 of file SMatrix.icc.
|
inline |
access the parse tree with the index starting from zero and following the C convention for the order in accessing the matrix elements.
Same convention for general and symmetric matrices.
Definition at line 627 of file SMatrix.icc.
|
inline |
return pointer to internal array
Definition at line 633 of file SMatrix.icc.
|
inline |
return read-only pointer to internal array
Definition at line 630 of file SMatrix.icc.
|
inline |
read/write access to matrix element with indices starting from 0.
Function will check index values and it will assert if they are wrong
Definition at line 660 of file SMatrix.icc.
|
inline |
read only access to matrix element, with indices starting from 0.
Function will check index values and it will assert if they are wrong
Definition at line 653 of file SMatrix.icc.
|
inline |
STL iterator interface.
Definition at line 670 of file SMatrix.icc.
|
inline |
STL const_iterator interface.
Definition at line 680 of file SMatrix.icc.
SVector< T, D1 > ROOT::Math::SMatrix< T, D1, D2, R >::Col | ( | unsigned int | thecol | ) | const |
return a full Matrix column as a vector (copy the content in a new vector)
Definition at line 590 of file SMatrix.icc.
|
inline |
determinant of square Matrix via Dfact.
Return true when the calculation is successfull.
det | will contain the calculated determinant value Note: this will destroy the contents of the Matrix! |
Definition at line 466 of file SMatrix.icc.
|
inline |
determinant of square Matrix via Dfact.
Return true when the calculation is successfull.
det | will contain the calculated determinant value Note: this will preserve the content of the Matrix! |
Definition at line 473 of file SMatrix.icc.
SVector< T, D1 > ROOT::Math::SMatrix< T, D1, D2, R >::Diagonal |
return diagonal elements of a matrix as a Vector.
It works only for squared matrices D1 == D2, otherwise it will produce a compile error
Definition at line 755 of file SMatrix.icc.
|
inline |
STL iterator interface.
Definition at line 675 of file SMatrix.icc.
|
inline |
STL const_iterator interface.
Definition at line 685 of file SMatrix.icc.
|
inline |
Invert a square Matrix and returns a new matrix.
In case the inversion fails the current matrix is returned.
ifail | . ifail will be set to 0 when inversion is successfull. See ROOT::Math::SMatrix::Invert for the inversion algorithm |
Definition at line 419 of file SMatrix.icc.
|
inline |
Invert of a symmetric positive defined Matrix using Choleski decomposition.
A compile error is given if the matrix is not of type symmetric and a run-time failure if the matrix is not positive defined. In case the inversion fails the current matrix is returned.
ifail | . ifail will be set to 0 when inversion is successfull. See ROOT::Math::SMatrix::InvertChol for the inversion algorithm |
Definition at line 452 of file SMatrix.icc.
|
inline |
Invert a square Matrix and returns a new matrix.
In case the inversion fails the current matrix is returned.
ifail | . ifail will be set to 0 when inversion is successfull. See ROOT::Math::SMatrix::InvertFast for the inversion algorithm |
Definition at line 436 of file SMatrix.icc.
|
inline |
Invert a square Matrix ( this method changes the current matrix).
Return true if inversion is successfull. The method used for general square matrices is the LU factorization taken from Dinv routine from the CERNLIB (written in C++ from CLHEP authors) In case of symmetric matrices Bunch-Kaufman diagonal pivoting method is used (The implementation is the one written by the CLHEP authors)
Definition at line 412 of file SMatrix.icc.
|
inline |
Invertion of a symmetric positive defined Matrix using Choleski decomposition.
( this method changes the current matrix). Return true if inversion is successfull. The method used is based on Choleski decomposition A compile error is given if the matrix is not of type symmetric and a run-time failure if the matrix is not positive defined. For solving a linear system, it is possible to use also the function ROOT::Math::SolveChol(matrix, vector) which will be faster than performing the inversion
Definition at line 446 of file SMatrix.icc.
|
inline |
Fast Invertion of a square Matrix ( this method changes the current matrix).
Return true if inversion is successfull. The method used is based on direct inversion using the Cramer rule for matrices upto 5x5. Afterwards the same default algorithm of Invert() is used. Note that this method is faster but can suffer from much larger numerical accuracy when the condition of the matrix is large
Definition at line 429 of file SMatrix.icc.
bool ROOT::Math::SMatrix< T, D1, D2, R >::IsInUse | ( | const T * | p | ) | const |
Function to check if a matrix is sharing same memory location of the passed pointer This function is used by the expression templates to avoid the alias problem during expression evaluation.
When the matrix is in use, for example in operations like A = B * A, a temporary object storing the intermediate result is automatically created when evaluating the expression.
Definition at line 895 of file SMatrix.icc.
SVector< T, D1 *(D2+1)/2 > ROOT::Math::SMatrix< T, D1, D2, R >::LowerBlock |
return the lower Triangular block of the matrices (including the diagonal) as a vector of sizes N = D1 * (D1 + 1)/2.
It works only for square matrices with D1==D2, otherwise it will produce a compile error
Definition at line 826 of file SMatrix.icc.
|
inline |
element wise comparison
Definition at line 338 of file SMatrix.icc.
|
inline |
element wise comparison
Definition at line 332 of file SMatrix.icc.
|
inline |
element wise comparison
Definition at line 327 of file SMatrix.icc.
|
inline |
read/write access to matrix element with indices starting from 0
Definition at line 644 of file SMatrix.icc.
|
inline |
read only access to matrix element, with indices starting from 0
Definition at line 639 of file SMatrix.icc.
SMatrix< T, D1, D2, R > & ROOT::Math::SMatrix< T, D1, D2, R >::operator*= | ( | const Expr< A, T, D1, D2, R2 > & | rhs | ) |
multiplication with a compatible matrix expression (it is a real matrix multiplication)
Definition at line 276 of file SMatrix.icc.
SMatrix< T, D1, D2, R > & ROOT::Math::SMatrix< T, D1, D2, R >::operator*= | ( | const SMatrix< T, D1, D2, R2 > & | rhs | ) |
multiplication with another compatible matrix (it is a real matrix multiplication) Note that this operation does not avid to create a temporary to store intermidiate result
Definition at line 268 of file SMatrix.icc.
SMatrix< T, D1, D2, R > & ROOT::Math::SMatrix< T, D1, D2, R >::operator*= | ( | const T & | rhs | ) |
multiplication with a scalar
Definition at line 258 of file SMatrix.icc.
SMatrix< T, D1, D2, R > & ROOT::Math::SMatrix< T, D1, D2, R >::operator+= | ( | const Expr< A, T, D1, D2, R2 > & | rhs | ) |
addition with a compatible matrix expression
Definition at line 217 of file SMatrix.icc.
SMatrix< T, D1, D2, R > & ROOT::Math::SMatrix< T, D1, D2, R >::operator+= | ( | const SMatrix< T, D1, D2, R2 > & | rhs | ) |
addition with another matrix of any compatible representation
Definition at line 207 of file SMatrix.icc.
SMatrix< T, D1, D2, R > & ROOT::Math::SMatrix< T, D1, D2, R >::operator+= | ( | const T & | rhs | ) |
addition with a scalar
Definition at line 197 of file SMatrix.icc.
SMatrix< T, D1, D2, R > & ROOT::Math::SMatrix< T, D1, D2, R >::operator-= | ( | const Expr< A, T, D1, D2, R2 > & | rhs | ) |
subtraction with a compatible matrix expression
Definition at line 248 of file SMatrix.icc.
SMatrix< T, D1, D2, R > & ROOT::Math::SMatrix< T, D1, D2, R >::operator-= | ( | const SMatrix< T, D1, D2, R2 > & | rhs | ) |
subtraction with another matrix of any compatible representation
Definition at line 238 of file SMatrix.icc.
SMatrix< T, D1, D2, R > & ROOT::Math::SMatrix< T, D1, D2, R >::operator-= | ( | const T & | rhs | ) |
subtraction with a scalar
Definition at line 228 of file SMatrix.icc.
SMatrix< T, D1, D2, R > & ROOT::Math::SMatrix< T, D1, D2, R >::operator/= | ( | const T & | rhs | ) |
division with a scalar
Definition at line 287 of file SMatrix.icc.
bool ROOT::Math::SMatrix< T, D1, D2, R >::operator< | ( | const Expr< A, T, D1, D2, R2 > & | rhs | ) | const |
element wise comparison
Definition at line 399 of file SMatrix.icc.
bool ROOT::Math::SMatrix< T, D1, D2, R >::operator< | ( | const SMatrix< T, D1, D2, R2 > & | rhs | ) | const |
element wise comparison
Definition at line 389 of file SMatrix.icc.
bool ROOT::Math::SMatrix< T, D1, D2, R >::operator< | ( | const T & | rhs | ) | const |
element wise comparison
Definition at line 379 of file SMatrix.icc.
SMatrix< T, D1, D2, R > & ROOT::Math::SMatrix< T, D1, D2, R >::operator= | ( | const Expr< A, T, D1, D2, R2 > & | rhs | ) |
Assign from a matrix expression.
Definition at line 168 of file SMatrix.icc.
SMatrix< T, D1, D2, R > & ROOT::Math::SMatrix< T, D1, D2, R >::operator= | ( | const M & | rhs | ) |
Assign from another compatible matrix.
Possible Symmetirc to general but NOT vice-versa
Definition at line 155 of file SMatrix.icc.
SMatrix< T, D1, D2, R > & ROOT::Math::SMatrix< T, D1, D2, R >::operator= | ( | const SMatrix< T, D1, D2, R > & | rhs | ) |
Definition at line 161 of file SMatrix.icc.
SMatrix< T, D1, D2, R > & ROOT::Math::SMatrix< T, D1, D2, R >::operator= | ( | const T & | rhs | ) |
Assign from a scalar value (only for size 1 matrices)
Definition at line 144 of file SMatrix.icc.
SMatrix< T, D1, D2, R > & ROOT::Math::SMatrix< T, D1, D2, R >::operator= | ( | SMatrixIdentity | ) |
Assign from an identity matrix.
Definition at line 177 of file SMatrix.icc.
bool ROOT::Math::SMatrix< T, D1, D2, R >::operator== | ( | const Expr< A, T, D1, D2, R2 > & | rhs | ) | const |
element wise comparison
Definition at line 315 of file SMatrix.icc.
bool ROOT::Math::SMatrix< T, D1, D2, R >::operator== | ( | const SMatrix< T, D1, D2, R2 > & | rhs | ) | const |
element wise comparison
Definition at line 309 of file SMatrix.icc.
bool ROOT::Math::SMatrix< T, D1, D2, R >::operator== | ( | const T & | rhs | ) | const |
element wise comparison
Definition at line 299 of file SMatrix.icc.
bool ROOT::Math::SMatrix< T, D1, D2, R >::operator> | ( | const Expr< A, T, D1, D2, R2 > & | rhs | ) | const |
element wise comparison
Definition at line 367 of file SMatrix.icc.
bool ROOT::Math::SMatrix< T, D1, D2, R >::operator> | ( | const SMatrix< T, D1, D2, R2 > & | rhs | ) | const |
element wise comparison
Definition at line 357 of file SMatrix.icc.
bool ROOT::Math::SMatrix< T, D1, D2, R >::operator> | ( | const T & | rhs | ) | const |
element wise comparison
Definition at line 347 of file SMatrix.icc.
|
inline |
|
inline |
SMatrix< T, D1, D2, R > & ROOT::Math::SMatrix< T, D1, D2, R >::Place_at | ( | const Expr< A, T, D3, D4, R2 > & | rhs, |
unsigned int | row, | ||
unsigned int | col | ||
) |
place a matrix expression in this matrix
Definition at line 564 of file SMatrix.icc.
SMatrix< T, D1, D2, R > & ROOT::Math::SMatrix< T, D1, D2, R >::Place_at | ( | const SMatrix< T, D3, D4, R2 > & | rhs, |
unsigned int | row, | ||
unsigned int | col | ||
) |
place a matrix in this matrix
Definition at line 552 of file SMatrix.icc.
SMatrix< T, D1, D2, R > & ROOT::Math::SMatrix< T, D1, D2, R >::Place_in_col | ( | const SVector< T, D > & | rhs, |
unsigned int | row, | ||
unsigned int | col | ||
) |
place a vector in a Matrix column
Definition at line 518 of file SMatrix.icc.
SMatrix< T, D1, D2, R > & ROOT::Math::SMatrix< T, D1, D2, R >::Place_in_col | ( | const VecExpr< A, T, D > & | rhs, |
unsigned int | row, | ||
unsigned int | col | ||
) |
place a vector expression in a Matrix column
Definition at line 535 of file SMatrix.icc.
SMatrix< T, D1, D2, R > & ROOT::Math::SMatrix< T, D1, D2, R >::Place_in_row | ( | const SVector< T, D > & | rhs, |
unsigned int | row, | ||
unsigned int | col | ||
) |
place a vector in a Matrix row
Definition at line 484 of file SMatrix.icc.
SMatrix< T, D1, D2, R > & ROOT::Math::SMatrix< T, D1, D2, R >::Place_in_row | ( | const VecExpr< A, T, D > & | rhs, |
unsigned int | row, | ||
unsigned int | col | ||
) |
place a vector expression in a Matrix row
Definition at line 501 of file SMatrix.icc.
std::ostream & ROOT::Math::SMatrix< T, D1, D2, R >::Print | ( | std::ostream & | os | ) | const |
Print: used by operator<<()
Definition at line 603 of file SMatrix.icc.
SVector< T, D2 > ROOT::Math::SMatrix< T, D1, D2, R >::Row | ( | unsigned int | therow | ) | const |
return a full Matrix row as a vector (copy the content in a new vector)
Definition at line 575 of file SMatrix.icc.
void ROOT::Math::SMatrix< T, D1, D2, R >::SetDiagonal | ( | const Vector & | v | ) |
Set the diagonal elements from a Vector Require that vector implements SVector::kSize since a check (statically) is done on diagonal size == vector size.
Definition at line 770 of file SMatrix.icc.
void ROOT::Math::SMatrix< T, D1, D2, R >::SetElements | ( | InputIterator | begin, |
InputIterator | end, | ||
bool | triang = false , |
||
bool | lower = true |
||
) |
Set matrix elements with STL iterator interface.
The data will be copied into the matrix
begin | start iterator position |
end | end iterator position |
triang | if true only the triangular lower/upper part of the matrix is filled from the iterators |
lower | if true the lower triangular part is filled |
Size of the matrix must match size of the iterators, if triang is false, otherwise the size of the triangular block. In the case of symmetric matrices triang is considered always to be true (what-ever the user specifies) and the size of the iterators must be equal to the size of the triangular block, which is the number of independent elements of a symmetric matrix: N*(N+1)/2
Definition at line 692 of file SMatrix.icc.
void ROOT::Math::SMatrix< T, D1, D2, R >::SetElements | ( | InputIterator | begin, |
unsigned int | size, | ||
bool | triang = false , |
||
bool | lower = true |
||
) |
Constructor with STL iterator interface.
The data will be copied into the matrix
begin | start iterator position |
size | iterator size |
triang | if true only the triangular lower/upper part of the matrix is filled from the iterators |
lower | if true the lower triangular part is filled |
Size of the iterators must not be larger than the size of the matrix representation. In the case of symmetric matrices the size is N*(N+1)/2.
Definition at line 699 of file SMatrix.icc.
SubMatrix ROOT::Math::SMatrix< T, D1, D2, R >::Sub | ( | unsigned int | row0, |
unsigned int | col0 | ||
) | const |
return a submatrix with the upper left corner at the values (row0, col0) and with sizes N1, N2 where N1 and N2 are the dimension of the sub-matrix (SubMatrix::kRows and SubMatrix::kCols ) Condition row0+N1 <= D1 && col0+N2 <=D2
Definition at line 745 of file SMatrix.icc.
SubVector ROOT::Math::SMatrix< T, D1, D2, R >::SubCol | ( | unsigned int | thecol, |
unsigned int | row0 = 0 |
||
) | const |
return a slice of the column as a vector starting at the row value row0 until row0+Dsub.
where N is the size of the vector (SVector::kSize ) Condition row0+N <= D1
Definition at line 728 of file SMatrix.icc.
SubVector ROOT::Math::SMatrix< T, D1, D2, R >::SubRow | ( | unsigned int | therow, |
unsigned int | col0 = 0 |
||
) | const |
return a slice of therow as a vector starting at the colum value col0 until col0+N, where N is the size of the vector (SVector::kSize ) Condition col0+N <= D2
Definition at line 712 of file SMatrix.icc.
T ROOT::Math::SMatrix< T, D1, D2, R >::Trace |
return the trace of a matrix Sum of the diagonal elements
Definition at line 784 of file SMatrix.icc.
SVector< T, D1 *(D2+1)/2 > ROOT::Math::SMatrix< T, D1, D2, R >::UpperBlock |
return the upper Triangular block of the matrices (including the diagonal) as a vector of sizes N = D1 * (D1 + 1)/2.
It works only for square matrices with D1==D2, otherwise it will produce a compile error
Definition at line 797 of file SMatrix.icc.
R ROOT::Math::SMatrix< T, D1, D2, R >::fRep |