Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
TMehrotraSolver.cxx
Go to the documentation of this file.
1// @(#)root/quadp:$Id$
2// Author: Eddy Offermann May 2004
3
4/*************************************************************************
5 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
6 * All rights reserved. *
7 * *
8 * For the licensing terms see $ROOTSYS/LICENSE. *
9 * For the list of contributors see $ROOTSYS/README/CREDITS. *
10 *************************************************************************/
11
12/*************************************************************************
13 * Parts of this file are copied from the OOQP distribution and *
14 * are subject to the following license: *
15 * *
16 * COPYRIGHT 2001 UNIVERSITY OF CHICAGO *
17 * *
18 * The copyright holder hereby grants you royalty-free rights to use, *
19 * reproduce, prepare derivative works, and to redistribute this software*
20 * to others, provided that any changes are clearly documented. This *
21 * software was authored by: *
22 * *
23 * E. MICHAEL GERTZ gertz@mcs.anl.gov *
24 * Mathematics and Computer Science Division *
25 * Argonne National Laboratory *
26 * 9700 S. Cass Avenue *
27 * Argonne, IL 60439-4844 *
28 * *
29 * STEPHEN J. WRIGHT swright@cs.wisc.edu *
30 * Computer Sciences Department *
31 * University of Wisconsin *
32 * 1210 West Dayton Street *
33 * Madison, WI 53706 FAX: (608)262-9777 *
34 * *
35 * Any questions or comments may be directed to one of the authors. *
36 * *
37 * ARGONNE NATIONAL LABORATORY (ANL), WITH FACILITIES IN THE STATES OF *
38 * ILLINOIS AND IDAHO, IS OWNED BY THE UNITED STATES GOVERNMENT, AND *
39 * OPERATED BY THE UNIVERSITY OF CHICAGO UNDER PROVISION OF A CONTRACT *
40 * WITH THE DEPARTMENT OF ENERGY. *
41 *************************************************************************/
42
43////////////////////////////////////////////////////////////////////////////////
44///
45/// \class TMehrotraSolver
46///
47/// Derived class of TQpSolverBase implementing the original Mehrotra
48/// predictor-corrector algorithm
49///
50////////////////////////////////////////////////////////////////////////////////
51
52#include <iostream>
53#include "TMath.h"
54#include "TMehrotraSolver.h"
55
57
58////////////////////////////////////////////////////////////////////////////////
59/// Default constructor
60
62{
63 fPrintlevel = 0;
64 fTsig = 0.0;
65 fStep = 0;
66 fFactory = 0;
67}
68
69
70////////////////////////////////////////////////////////////////////////////////
71/// Constructor
72
74{
75 fFactory = of;
77
78 fPrintlevel = verbose;
79 fTsig = 3.0; // the usual value for the centering exponent (tau)
80}
81
82
83////////////////////////////////////////////////////////////////////////////////
84/// Copy constructor
85
87{
88 *this = another;
89}
90
91
92////////////////////////////////////////////////////////////////////////////////
93/// Solve the quadratic programming problem as formulated through prob, store
94/// the final solution in iterate->fX . Monitor the residuals during the iterations
95/// through resid . The status is returned as defined in TQpSolverBase::ETerminationCode .
96
98{
99 Int_t status_code;
100 Double_t alpha = 1;
101 Double_t sigma = 1;
102
103 fDnorm = prob->DataNorm();
104
105 // initialization of (x,y,z) and factorization routine.
106 fSys = fFactory->MakeLinSys(prob);
107 this->Start(fFactory,iterate,prob,resid,fStep);
108
109 fIter = 0;
110 Double_t mu = iterate->GetMu();
111
112 Int_t done = 0;
113 do {
114 fIter++;
115
116 // evaluate residuals and update algorithm status:
117 resid->CalcResids(prob,iterate);
118
119 // termination test:
120 status_code = this->DoStatus(prob,iterate,resid,fIter,mu,0);
121 if (status_code != kNOT_FINISHED ) break;
122 if (fPrintlevel >= 10)
123 this->DoMonitor(prob,iterate,resid,alpha,sigma,fIter,mu,status_code,0);
124
125 // *** Predictor step ***
126
127 resid->Set_r3_xz_alpha(iterate,0.0);
128
129 fSys->Factor(prob,iterate);
130 fSys->Solve(prob,iterate,resid,fStep);
131 fStep->Negate();
132
133 alpha = iterate->StepBound(fStep);
134
135 // calculate centering parameter
136 Double_t muaff = iterate->MuStep(fStep,alpha);
137 sigma = TMath::Power(muaff/mu,fTsig);
138
139 // *** Corrector step ***
140
141 // form right hand side of linear system:
142 resid->Add_r3_xz_alpha(fStep,-sigma*mu );
143
144 fSys->Solve(prob,iterate,resid,fStep);
145 fStep->Negate();
146
147 // We've finally decided on a step direction, now calculate the
148 // length using Mehrotra's heuristic.
149 alpha = this->FinalStepLength(iterate,fStep);
150
151 // alternatively, just use a crude step scaling factor.
152 //alpha = 0.995 * iterate->StepBound(fStep);
153
154 // actually take the step and calculate the new mu
155 iterate->Saxpy(fStep,alpha);
156 mu = iterate->GetMu();
157 } while(!done);
158
159 resid->CalcResids(prob,iterate);
160 if (fPrintlevel >= 10)
161 this->DoMonitor(prob,iterate,resid,alpha,sigma,fIter,mu,status_code,1);
162
163 return status_code;
164}
165
166
167////////////////////////////////////////////////////////////////////////////////
168/// Print information about the optimization process and monitor the convergence
169/// status of thye algorithm
170
171void TMehrotraSolver::DefMonitor(TQpDataBase * /* data */,TQpVar * /* vars */,
172 TQpResidual *resids,
173 Double_t alpha,Double_t /* sigma */,Int_t i,Double_t mu,
174 Int_t status_code,Int_t level)
175{
176 switch (level) {
177 case 0 : case 1:
178 {
179 std::cout << std::endl << "Duality Gap: " << resids->GetDualityGap() << std::endl;
180 if (i > 1) {
181 std::cout << " alpha = " << alpha << std::endl;
182 }
183 std::cout << " *** Iteration " << i << " *** " << std::endl;
184 std::cout << " mu = " << mu << " relative residual norm = "
185 << resids->GetResidualNorm()/fDnorm << std::endl;
186
187 if (level == 1) {
188 // Termination has been detected by the status check; print
189 // appropriate message
190 switch (status_code) {
192 std::cout << std::endl << " *** SUCCESSFUL TERMINATION ***" << std::endl;
193 break;
195 std::cout << std::endl << " *** MAXIMUM ITERATIONS REACHED *** " << std::endl;
196 break;
197 case kINFEASIBLE:
198 std::cout << std::endl << " *** TERMINATION: PROBABLY INFEASIBLE *** " << std::endl;
199 break;
200 case kUNKNOWN:
201 std::cout << std::endl << " *** TERMINATION: STATUS UNKNOWN *** " << std::endl;
202 break;
203 }
204 }
205 } break; // end case 0: case 1:
206 } // end switch(level)
207}
208
209
210////////////////////////////////////////////////////////////////////////////////
211/// Deconstructor
212
214{
215 delete fStep;
216}
217
218
219////////////////////////////////////////////////////////////////////////////////
220/// Assignment operator
221
223{
224 if (this != &source) {
226
227 fPrintlevel = source.fPrintlevel;
228 fTsig = source.fTsig;
229
230 if (fStep) delete fStep;
231
232 fStep = new TQpVar(*source.fStep);
233 fFactory = source.fFactory;
234 }
235 return *this;
236}
#define ClassImp(name)
Definition Rtypes.h:377
@ kNOT_FINISHED
@ kINFEASIBLE
@ kMAX_ITS_EXCEEDED
@ kUNKNOWN
@ kSUCCESSFUL_TERMINATION
Derived class of TQpSolverBase implementing the original Mehrotra predictor-corrector algorithm.
void DefMonitor(TQpDataBase *data, TQpVar *vars, TQpResidual *resids, Double_t alpha, Double_t sigma, Int_t i, Double_t mu, Int_t status_code, Int_t level) override
Print information about the optimization process and monitor the convergence status of thye algorithm...
TMehrotraSolver()
Default constructor.
TMehrotraSolver & operator=(const TMehrotraSolver &source)
Assignment operator.
~TMehrotraSolver() override
Deconstructor.
Int_t Solve(TQpDataBase *prob, TQpVar *iterate, TQpResidual *resid) override
Solve the quadratic programming problem as formulated through prob, store the final solution in itera...
TQpProbBase * fFactory
Data for the general QP formulation.
Definition TQpDataBase.h:61
virtual Double_t DataNorm()=0
virtual void Solve(TQpDataBase *prob, TQpVar *vars, TQpResidual *resids, TQpVar *step)
Solves the system for a given set of residuals.
virtual void Factor(TQpDataBase *prob, TQpVar *vars)
Sets up the matrix for the main linear system in "augmented system" form.
default general problem formulation:
Definition TQpProbBase.h:89
virtual TQpLinSolverBase * MakeLinSys(const TQpDataBase *data)=0
virtual TQpVar * MakeVariables(const TQpDataBase *data)=0
The Residuals class calculates and stores the quantities that appear on the right-hand side of the li...
Definition TQpResidual.h:62
Double_t GetDualityGap()
Double_t GetResidualNorm()
void Set_r3_xz_alpha(TQpVar *vars, Double_t alpha)
Set the "complementarity" component of the residuals to the pairwise products of the complementary va...
void CalcResids(TQpDataBase *problem, TQpVar *vars)
Calculate residuals, their norms, and duality complementarity gap, given a problem and variable set.
void Add_r3_xz_alpha(TQpVar *vars, Double_t alpha)
Modify the "complementarity" component of the residuals, by adding the pairwise products of the compl...
The Solver class contains methods for monitoring and checking the convergence status of the algorithm...
TQpLinSolverBase * fSys
Double_t fDnorm
virtual void Start(TQpProbBase *formulation, TQpVar *iterate, TQpDataBase *prob, TQpResidual *resid, TQpVar *step)
Implements a default starting-point heuristic.
virtual void DoMonitor(TQpDataBase *data, TQpVar *vars, TQpResidual *resids, Double_t alpha, Double_t sigma, Int_t i, Double_t mu, Int_t stop_code, Int_t level)
Monitor progress / convergence aat each interior-point iteration.
virtual Int_t DoStatus(TQpDataBase *data, TQpVar *vars, TQpResidual *resids, Int_t i, Double_t mu, Int_t level)
Tests for termination.
virtual Double_t FinalStepLength(TQpVar *iterate, TQpVar *step)
Implements a version of Mehrotra starting point heuristic, modified to ensure identical steps in the ...
TQpSolverBase & operator=(const TQpSolverBase &source)
Assignment operator.
Class containing the variables for the general QP formulation.
Definition TQpVar.h:60
virtual void Negate()
Perform a "negate" operation on all data vectors : x = -x.
Definition TQpVar.cxx:272
const Double_t sigma
int iterate(rng_state_t *X)
Definition mixmax.icc:34
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Returns x raised to the power y.
Definition TMath.h:719