Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
RooAbsOptTestStatistic.cxx
Go to the documentation of this file.
1/*****************************************************************************
2 * Project: RooFit *
3 * Package: RooFitCore *
4 * @(#)root/roofitcore:$Id$
5 * Authors: *
6 * WV, Wouter Verkerke, UC Santa Barbara, verkerke@slac.stanford.edu *
7 * DK, David Kirkby, UC Irvine, dkirkby@uci.edu *
8 * *
9 * Copyright (c) 2000-2005, Regents of the University of California *
10 * and Stanford University. All rights reserved. *
11 * *
12 * Redistribution and use in source and binary forms, *
13 * with or without modification, are permitted according to the terms *
14 * listed in LICENSE (http://roofit.sourceforge.net/license.txt) *
15 *****************************************************************************/
16
17/**
18\file RooAbsOptTestStatistic.cxx
19\class RooAbsOptTestStatistic
20\ingroup Roofitcore
21
22RooAbsOptTestStatistic is the abstract base class for test
23statistics objects that evaluate a function or PDF at each point of a given
24dataset. This class provides generic optimizations, such as
25caching and precalculation of constant terms that can be made for
26all such quantities.
27
28Implementations should define evaluatePartition(), which calculates the
29value of a (sub)range of the dataset and optionally combinedValue(),
30which combines the values calculated for each partition. If combinedValue()
31is not overloaded, the default implementation will add the partition results
32to obtain the combined result.
33
34Support for calculation in partitions is needed to allow multi-core
35parallelized calculation of test statistics.
36**/
37
38#include "Riostream.h"
39#include "TClass.h"
40#include <string.h>
41
42
44#include "RooMsgService.h"
45#include "RooAbsPdf.h"
46#include "RooAbsData.h"
47#include "RooDataHist.h"
48#include "RooArgSet.h"
49#include "RooRealVar.h"
50#include "RooErrorHandler.h"
51#include "RooGlobalFunc.h"
52#include "RooBinning.h"
53#include "RooAbsDataStore.h"
54#include "RooCategory.h"
55#include "RooDataSet.h"
56#include "RooProdPdf.h"
57#include "RooAddPdf.h"
58#include "RooProduct.h"
59#include "RooRealSumPdf.h"
60#include "RooTrace.h"
61#include "RooVectorDataStore.h"
62#include "RooBinSamplingPdf.h"
63
64#include "ROOT/StringUtils.hxx"
65
66using namespace std;
67
69;
70
71
72////////////////////////////////////////////////////////////////////////////////
73/// Default Constructor
74
76{
77 // Initialize all non-persisted data members
78
79 _funcObsSet = 0 ;
80 _funcCloneSet = 0 ;
81 _funcClone = 0 ;
82
83 _normSet = 0 ;
84 _projDeps = 0 ;
85
86 _origFunc = 0 ;
87 _origData = 0 ;
88
89 _ownData = true ;
90 _sealed = false ;
91 _optimized = false ;
92}
93
94
95
96////////////////////////////////////////////////////////////////////////////////
97/// Create a test statistic, and optimise its calculation.
98/// \param[in] name Name of the instance.
99/// \param[in] title Title (for e.g. plotting).
100/// \param[in] real Function to evaluate.
101/// \param[in] indata Dataset for which to compute test statistic.
102/// \param[in] projDeps A set of projected observables.
103/// \param[in] cfg the statistic configuration
104///
105/// cfg contains:
106/// - rangeName If not null, only events in the dataset inside the range will be used in the test
107/// statistic calculation.
108/// - addCoefRangeName If not null, all RooAddPdf components of `real` will be
109/// instructed to fix their fraction definitions to the given named range.
110/// - nCPU If > 1, the test statistic calculation will be parallelised over multiple processes. By default, the data
111/// is split with 'bulk' partitioning (each process calculates a contiguous block of fraction 1/nCPU
112/// of the data). For binned data, this approach may be suboptimal as the number of bins with >0 entries
113/// in each processing block may vary greatly; thereby distributing the workload rather unevenly.
114/// - interleave Strategy how to distribute events among workers. If an interleave partitioning strategy is used where each partition
115/// i takes all bins for which (ibin % ncpu == i), an even distribution of work is more likely.
116/// - splitCutRange If true, a different rangeName constructed as `rangeName_{catName}` will be used
117/// as range definition for each index state of a RooSimultaneous.
118/// - cloneInputData Not used. Data is always cloned.
119/// - integrateOverBinsPrecision If > 0, PDF in binned fits are integrated over the bins. This sets the precision. If = 0,
120/// only unbinned PDFs fit to RooDataHist are integrated. If < 0, PDFs are never integrated.
122 RooAbsData& indata, const RooArgSet& projDeps,
124 RooAbsTestStatistic(name,title,real,indata,projDeps,cfg),
125 _projDeps(0),
126 _sealed(false),
127 _optimized(false),
128 _integrateBinsPrecision(cfg.integrateOverBinsPrecision)
129{
130 // Don't do a thing in master mode
131
132 if (operMode()!=Slave) {
133 _funcObsSet = 0 ;
134 _funcCloneSet = 0 ;
135 _funcClone = 0 ;
136 _normSet = 0 ;
137 _projDeps = 0 ;
138 _origFunc = 0 ;
139 _origData = 0 ;
140 _ownData = false ;
141 _sealed = false ;
142 return ;
143 }
144
145 _origFunc = 0 ; //other._origFunc ;
146 _origData = 0 ; // other._origData ;
147
148 initSlave(real, indata, projDeps, _rangeName.c_str(), _addCoefRangeName.c_str()) ;
149}
150
151////////////////////////////////////////////////////////////////////////////////
152/// Copy constructor
153
155 RooAbsTestStatistic(other,name), _sealed(other._sealed), _sealNotice(other._sealNotice), _optimized(false),
156 _integrateBinsPrecision(other._integrateBinsPrecision)
157{
158 // Don't do a thing in master mode
159 if (operMode()!=Slave) {
160
161 _funcObsSet = 0 ;
162 _funcCloneSet = 0 ;
163 _funcClone = 0 ;
164 _normSet = other._normSet ? ((RooArgSet*) other._normSet->snapshot()) : 0 ;
165 _projDeps = 0 ;
166 _origFunc = 0 ;
167 _origData = 0 ;
168 _ownData = false ;
169 return ;
170 }
171
172 _origFunc = 0 ; //other._origFunc ;
173 _origData = 0 ; // other._origData ;
174 _projDeps = 0 ;
175
176 initSlave(*other._funcClone,*other._dataClone,other._projDeps?*other._projDeps:RooArgSet(),other._rangeName.c_str(),other._addCoefRangeName.c_str()) ;
177}
178
179
180
181////////////////////////////////////////////////////////////////////////////////
182
183void RooAbsOptTestStatistic::initSlave(RooAbsReal& real, RooAbsData& indata, const RooArgSet& projDeps, const char* rangeName,
184 const char* addCoefRangeName) {
185 // ******************************************************************
186 // *** PART 1 *** Clone incoming pdf, attach to each other *
187 // ******************************************************************
188
189 // Clone FUNC
190 _funcClone = RooHelpers::cloneTreeWithSameParameters(real, indata.get()).release();
191 _funcCloneSet = 0 ;
192
193 // Attach FUNC to data set
194 _funcObsSet = std::unique_ptr<RooArgSet>{_funcClone->getObservables(indata)}.release();
195
196 if (_funcClone->getAttribute("BinnedLikelihood")) {
197 _funcClone->setAttribute("BinnedLikelihoodActive") ;
198 }
199
200 // Mark all projected dependents as such
201 if (!projDeps.empty()) {
202 std::unique_ptr<RooArgSet> projDataDeps{static_cast<RooArgSet*>(_funcObsSet->selectCommon(projDeps))};
203 projDataDeps->setAttribAll("projectedDependent") ;
204 }
205
206 // If PDF is a RooProdPdf (with possible constraint terms)
207 // analyze pdf for actual parameters (i.e those in unconnected constraint terms should be
208 // ignored as here so that the test statistic will not be recalculated if those
209 // are changed
210 RooProdPdf* pdfWithCons = dynamic_cast<RooProdPdf*>(_funcClone) ;
211 if (pdfWithCons) {
212
213 std::unique_ptr<RooArgSet> connPars{pdfWithCons->getConnectedParameters(*indata.get())};
214 // Add connected parameters as servers
215 _paramSet.add(*connPars) ;
216
217 } else {
218 // Add parameters as servers
220 }
221
222 // Store normalization set
223 _normSet = (RooArgSet*) indata.get()->snapshot(false) ;
224
225 // Expand list of observables with any observables used in parameterized ranges.
226 // This NEEDS to be a counting loop since we are inserting during the loop.
227 for (std::size_t i = 0; i < _funcObsSet->size(); ++i) {
228 auto realDepRLV = dynamic_cast<const RooAbsRealLValue*>((*_funcObsSet)[i]);
229 if (realDepRLV && realDepRLV->isDerived()) {
230 RooArgSet tmp2;
231 realDepRLV->leafNodeServerList(&tmp2, 0, true);
232 _funcObsSet->add(tmp2,true);
233 }
234 }
235
236
237
238 // ******************************************************************
239 // *** PART 2 *** Clone and adjust incoming data, attach to PDF *
240 // ******************************************************************
241
242 // Check if the fit ranges of the dependents in the data and in the FUNC are consistent
243 const RooArgSet* dataDepSet = indata.get() ;
244 for (const auto arg : *_funcObsSet) {
245
246 // Check that both dataset and function argument are of type RooRealVar
247 RooRealVar* realReal = dynamic_cast<RooRealVar*>(arg) ;
248 if (!realReal) continue ;
249 RooRealVar* datReal = dynamic_cast<RooRealVar*>(dataDepSet->find(realReal->GetName())) ;
250 if (!datReal) continue ;
251
252 // Check that range of observables in pdf is equal or contained in range of observables in data
253
254 if (!realReal->getBinning().lowBoundFunc() && realReal->getMin()<(datReal->getMin()-1e-6)) {
255 coutE(InputArguments) << "RooAbsOptTestStatistic: ERROR minimum of FUNC observable " << arg->GetName()
256 << "(" << realReal->getMin() << ") is smaller than that of "
257 << arg->GetName() << " in the dataset (" << datReal->getMin() << ")" << endl ;
259 return ;
260 }
261
262 if (!realReal->getBinning().highBoundFunc() && realReal->getMax()>(datReal->getMax()+1e-6)) {
263 coutE(InputArguments) << "RooAbsOptTestStatistic: ERROR maximum of FUNC observable " << arg->GetName()
264 << " is larger than that of " << arg->GetName() << " in the dataset" << endl ;
266 return ;
267 }
268 }
269
270 // Copy data and strip entries lost by adjusted fit range, _dataClone ranges will be copied from realDepSet ranges
271 if (rangeName && strlen(rangeName)) {
273 // cout << "RooAbsOptTestStatistic: reducing dataset to fit in range named " << rangeName << " resulting dataset has " << _dataClone->sumEntries() << " events" << endl ;
274 } else {
275 _dataClone = (RooAbsData*) indata.Clone() ;
276 }
277 _ownData = true ;
278
279
280 // ******************************************************************
281 // *** PART 3 *** Make adjustments for fit ranges, if specified *
282 // ******************************************************************
283
284 std::unique_ptr<RooArgSet> origObsSet( real.getObservables(indata) );
285 if (rangeName && strlen(rangeName)) {
286 cxcoutI(Fitting) << "RooAbsOptTestStatistic::ctor(" << GetName() << ") constructing test statistic for sub-range named " << rangeName << endl ;
287
288 if(auto pdfClone = dynamic_cast<RooAbsPdf*>(_funcClone)) {
289 pdfClone->setNormRange(rangeName);
290 }
291
292 // Print warnings if the requested ranges are not available for the observable
293 for (const auto arg : *_funcObsSet) {
294
295 if (auto realObs = dynamic_cast<RooRealVar*>(arg)) {
296
297 auto tokens = ROOT::Split(rangeName, ",");
298 for(std::string const& token : tokens) {
299 if(!realObs->hasRange(token.c_str())) {
300 std::stringstream errMsg;
301 errMsg << "The observable \"" << realObs->GetName() << "\" doesn't define the requested range \""
302 << token << "\". Replacing it with the default range." << std::endl;
303 coutI(Fitting) << errMsg.str() << std::endl;
304 }
305 }
306 }
307 }
308 }
309
310
311 // ******************************************************************
312 // *** PART 3.2 *** Binned fits *
313 // ******************************************************************
314
316
317
318 // Fix RooAddPdf coefficients to original normalization range
319 if (rangeName && strlen(rangeName)) {
320
321 // WVE Remove projected dependents from normalization
323
324 if (addCoefRangeName && strlen(addCoefRangeName)) {
325 cxcoutI(Fitting) << "RooAbsOptTestStatistic::ctor(" << GetName()
326 << ") fixing interpretation of coefficients of any RooAddPdf component to range " << addCoefRangeName << endl ;
327 _funcClone->fixAddCoefRange(addCoefRangeName,false) ;
328 }
329 }
330
331
332 // This is deferred from part 2 - but must happen after part 3 - otherwise invalid bins cannot be properly marked in cacheValidEntries
335
336
337
338
339 // *********************************************************************
340 // *** PART 4 *** Adjust normalization range for projected observables *
341 // *********************************************************************
342
343 // Remove projected dependents from normalization set
344 if (projDeps.getSize()>0) {
345
346 _projDeps = (RooArgSet*) projDeps.snapshot(false) ;
347
348 //RooArgSet* tobedel = (RooArgSet*) _normSet->selectCommon(*_projDeps) ;
349 _normSet->remove(*_projDeps,true,true) ;
350
351 // Mark all projected dependents as such
353 projDataDeps->setAttribAll("projectedDependent") ;
354 delete projDataDeps ;
355 }
356
357
358 coutI(Optimization) << "RooAbsOptTestStatistic::ctor(" << GetName() << ") optimizing internal clone of p.d.f for likelihood evaluation."
359 << "Lazy evaluation and associated change tracking will disabled for all nodes that depend on observables" << endl ;
360
361
362 // *********************************************************************
363 // *** PART 4 *** Finalization and activation of optimization *
364 // *********************************************************************
365
366 // Redirect pointers of base class to clone
367 _func = _funcClone ;
368 _data = _dataClone ;
369
371
373
374 // It would be unusual if the global observables are used in the likelihood
375 // outside of the constraint terms, but if they are we have to be consistent
376 // and also redirect them to the snapshots in the dataset if appropriate.
379 }
380
381}
382
383
384////////////////////////////////////////////////////////////////////////////////
385/// Destructor
386
388{
389 if (operMode()==Slave) {
390 delete _funcClone ;
391 delete _funcObsSet ;
392 if (_projDeps) {
393 delete _projDeps ;
394 }
395 if (_ownData) {
396 delete _dataClone ;
397 }
398 }
399 delete _normSet ;
400}
401
402
403
404////////////////////////////////////////////////////////////////////////////////
405/// Method to combined test statistic results calculated into partitions into
406/// the global result. This default implementation adds the partition return
407/// values
408
410{
411 // Default implementation returns sum of components
412 double sum(0), carry(0);
413 for (Int_t i = 0; i < n; ++i) {
414 double y = array[i]->getValV();
415 carry += reinterpret_cast<RooAbsOptTestStatistic*>(array[i])->getCarry();
416 y -= carry;
417 const double t = sum + y;
418 carry = (t - sum) - y;
419 sum = t;
420 }
421 _evalCarry = carry;
422 return sum ;
423}
424
425
426
427////////////////////////////////////////////////////////////////////////////////
428/// Catch server redirect calls and forward to internal clone of function
429
430bool RooAbsOptTestStatistic::redirectServersHook(const RooAbsCollection& newServerList, bool mustReplaceAll, bool nameChange, bool isRecursive)
431{
432 RooAbsTestStatistic::redirectServersHook(newServerList,mustReplaceAll,nameChange,isRecursive) ;
433 if (operMode()!=Slave) return false ;
434 bool ret = _funcClone->recursiveRedirectServers(newServerList,false,nameChange) ;
435 return ret || RooAbsReal::redirectServersHook(newServerList, mustReplaceAll, nameChange, isRecursive);
436}
437
438
439
440////////////////////////////////////////////////////////////////////////////////
441/// Catch print hook function and forward to function clone
442
444{
446 if (operMode()!=Slave) return ;
447 TString indent2(indent) ;
448 indent2 += "opt >>" ;
449 _funcClone->printCompactTree(os,indent2.Data()) ;
450 os << indent2 << " dataset clone = " << _dataClone << " first obs = " << _dataClone->get()->first() << endl ;
451}
452
453
454
455////////////////////////////////////////////////////////////////////////////////
456/// Driver function to propagate constant term optimizations in test statistic.
457/// If code Activate is sent, constant term optimization will be executed.
458/// If code Deactivate is sent, any existing constant term optimizations will
459/// be abandoned. If codes ConfigChange or ValueChange are sent, any existing
460/// constant term optimizations will be redone.
461
463{
464 // cout << "ROATS::constOpt(" << GetName() << ") funcClone structure dump BEFORE const-opt" << endl ;
465 // _funcClone->Print("t") ;
466
467 RooAbsTestStatistic::constOptimizeTestStatistic(opcode,doAlsoTrackingOpt);
468 if (operMode()!=Slave) return ;
469
470 if (_dataClone->hasFilledCache() && _dataClone->store()->cacheOwner()!=this) {
471 if (opcode==Activate) {
472 cxcoutW(Optimization) << "RooAbsOptTestStatistic::constOptimize(" << GetName()
473 << ") dataset cache is owned by another object, no constant term optimization can be applied" << endl ;
474 }
475 return ;
476 }
477
478 if (!allowFunctionCache()) {
479 if (opcode==Activate) {
480 cxcoutI(Optimization) << "RooAbsOptTestStatistic::constOptimize(" << GetName()
481 << ") function caching prohibited by test statistic, no constant term optimization is applied" << endl ;
482 }
483 return ;
484 }
485
486 if (_dataClone->hasFilledCache() && opcode==Activate) {
487 opcode=ValueChange ;
488 }
489
490 switch(opcode) {
491 case Activate:
492 cxcoutI(Optimization) << "RooAbsOptTestStatistic::constOptimize(" << GetName()
493 << ") optimizing evaluation of test statistic by finding all nodes in p.d.f that depend exclusively"
494 << " on observables and constant parameters and precalculating their values" << endl ;
495 optimizeConstantTerms(true,doAlsoTrackingOpt) ;
496 break ;
497
498 case DeActivate:
499 cxcoutI(Optimization) << "RooAbsOptTestStatistic::constOptimize(" << GetName()
500 << ") deactivating optimization of constant terms in test statistic" << endl ;
501 optimizeConstantTerms(false) ;
502 break ;
503
504 case ConfigChange:
505 cxcoutI(Optimization) << "RooAbsOptTestStatistic::constOptimize(" << GetName()
506 << ") one ore more parameter were changed from constant to floating or vice versa, "
507 << "re-evaluating constant term optimization" << endl ;
508 optimizeConstantTerms(false) ;
509 optimizeConstantTerms(true,doAlsoTrackingOpt) ;
510 break ;
511
512 case ValueChange:
513 cxcoutI(Optimization) << "RooAbsOptTestStatistic::constOptimize(" << GetName()
514 << ") the value of one ore more constant parameter were changed re-evaluating constant term optimization" << endl ;
515 // Request a forcible cache update of all cached nodes
517
518 break ;
519 }
520
521// cout << "ROATS::constOpt(" << GetName() << ") funcClone structure dump AFTER const-opt" << endl ;
522// _funcClone->Print("t") ;
523}
524
525
526
527////////////////////////////////////////////////////////////////////////////////
528/// This method changes the value caching logic for all nodes that depends on any of the observables
529/// as defined by the given dataset. When evaluating a test statistic constructed from the RooAbsReal
530/// with a dataset the observables are guaranteed to change with every call, thus there is no point
531/// in tracking these changes which result in a net overhead. Thus for observable-dependent nodes,
532/// the evaluation mechanism is changed from being dependent on a 'valueDirty' flag to guaranteed evaluation.
533/// On the dataset side, the observables objects are modified to no longer send valueDirty messages
534/// to their client
535
537{
538// cout << "RooAbsOptTestStatistic::optimizeCaching(" << GetName() << "," << this << ")" << endl ;
539
540 // Trigger create of all object caches now in nodes that have deferred object creation
541 // so that cache contents can be processed immediately
543
544 // Set value caching mode for all nodes that depend on any of the observables to ADirty
546
547 // Disable propagation of dirty state flags for observables
548 _dataClone->setDirtyProp(false) ;
549
550 // Disable reading of observables that are not used
552}
553
554
555
556////////////////////////////////////////////////////////////////////////////////
557/// Driver function to activate global constant term optimization.
558/// If activated, constant terms are found and cached with the dataset.
559/// The operation mode of cached nodes is set to AClean meaning that
560/// their getVal() call will never result in an evaluate call.
561/// Finally the branches in the dataset that correspond to observables
562/// that are exclusively used in constant terms are disabled as
563/// they serve no more purpose
564
565void RooAbsOptTestStatistic::optimizeConstantTerms(bool activate, bool applyTrackingOpt)
566{
567 if(activate) {
568
569 if (_optimized) {
570 return ;
571 }
572
573 // Trigger create of all object caches now in nodes that have deferred object creation
574 // so that cache contents can be processed immediately
576
577
578 // WVE - Patch to allow customization of optimization level per component pdf
579 if (_funcClone->getAttribute("NoOptimizeLevel1")) {
580 coutI(Minimization) << " Optimization customization: Level-1 constant-term optimization prohibited by attribute NoOptimizeLevel1 set on top-level pdf "
581 << _funcClone->ClassName() << "::" << _funcClone->GetName() << endl ;
582 return ;
583 }
584 if (_funcClone->getAttribute("NoOptimizeLevel2")) {
585 coutI(Minimization) << " Optimization customization: Level-2 constant-term optimization prohibited by attribute NoOptimizeLevel2 set on top-level pdf "
586 << _funcClone->ClassName() << "::" << _funcClone->GetName() << endl ;
587 applyTrackingOpt=false ;
588 }
589
590 // Apply tracking optimization here. Default strategy is to track components
591 // of RooAddPdfs and RooRealSumPdfs. If these components are a RooProdPdf
592 // or a RooProduct respectively, track the components of these products instead
593 // of the product term
594 RooArgSet trackNodes ;
595
596
597 // Add safety check here - applyTrackingOpt will only be applied if present
598 // dataset is constructed in terms of a RooVectorDataStore
599 if (applyTrackingOpt) {
600 if (!dynamic_cast<RooVectorDataStore*>(_dataClone->store())) {
601 coutW(Optimization) << "RooAbsOptTestStatistic::optimizeConstantTerms(" << GetName()
602 << ") WARNING Cache-and-track optimization (Optimize level 2) is only available for datasets"
603 << " implement in terms of RooVectorDataStore - ignoring this option for current dataset" << endl ;
604 applyTrackingOpt = false ;
605 }
606 }
607
608 if (applyTrackingOpt) {
609 RooArgSet branches ;
610 _funcClone->branchNodeServerList(&branches) ;
611 for (auto arg : branches) {
612 arg->setCacheAndTrackHints(trackNodes);
613 }
614 // Do not set CacheAndTrack on constant expressions
615 RooArgSet* constNodes = (RooArgSet*) trackNodes.selectByAttrib("Constant",true) ;
616 trackNodes.remove(*constNodes) ;
617 delete constNodes ;
618
619 // Set CacheAndTrack flag on all remaining nodes
620 trackNodes.setAttribAll("CacheAndTrack",true) ;
621 }
622
623 // Find all nodes that depend exclusively on constant parameters
625
627
628 // Cache constant nodes with dataset - also cache entries corresponding to zero-weights in data when using BinnedLikelihood
629 _dataClone->cacheArgs(this,_cachedNodes,_normSet,!_funcClone->getAttribute("BinnedLikelihood")) ;
630
631 // Put all cached nodes in AClean value caching mode so that their evaluate() is never called
632 for (auto cacheArg : _cachedNodes) {
633 cacheArg->setOperMode(RooAbsArg::AClean) ;
634 }
635
636 RooArgSet* constNodes = (RooArgSet*) _cachedNodes.selectByAttrib("ConstantExpressionCached",true) ;
637 RooArgSet actualTrackNodes(_cachedNodes) ;
638 actualTrackNodes.remove(*constNodes) ;
639 if (constNodes->getSize()>0) {
640 if (constNodes->getSize()<20) {
641 coutI(Minimization) << " The following expressions have been identified as constant and will be precalculated and cached: " << *constNodes << endl ;
642 } else {
643 coutI(Minimization) << " A total of " << constNodes->getSize() << " expressions have been identified as constant and will be precalculated and cached." << endl ;
644 }
645 }
646 if (actualTrackNodes.getSize()>0) {
647 if (actualTrackNodes.getSize()<20) {
648 coutI(Minimization) << " The following expressions will be evaluated in cache-and-track mode: " << actualTrackNodes << endl ;
649 } else {
650 coutI(Minimization) << " A total of " << constNodes->getSize() << " expressions will be evaluated in cache-and-track-mode." << endl ;
651 }
652 }
653 delete constNodes ;
654
655 // Disable reading of observables that are no longer used
657
658 _optimized = true ;
659
660 } else {
661
662 // Delete the cache
664
665 // Reactivate all tree branches
667
668 // Reset all nodes to ADirty
670
671 // Disable propagation of dirty state flags for observables
672 _dataClone->setDirtyProp(false) ;
673
675
676
677 _optimized = false ;
678 }
679}
680
681
682
683////////////////////////////////////////////////////////////////////////////////
684/// Change dataset that is used to given one. If cloneData is true, a clone of
685/// in the input dataset is made. If the test statistic was constructed with
686/// a range specification on the data, the cloneData argument is ignored and
687/// the data is always cloned.
688bool RooAbsOptTestStatistic::setDataSlave(RooAbsData& indata, bool cloneData, bool ownNewData)
689{
690
691 if (operMode()==SimMaster) {
692 //cout << "ROATS::setDataSlave() ERROR this is SimMaster _funcClone = " << _funcClone << endl ;
693 return false ;
694 }
695
696 //cout << "ROATS::setDataSlave() new dataset size = " << indata.numEntries() << endl ;
697 //indata.Print("v") ;
698
699
700 // If the current dataset is owned, transfer the ownership to unique pointer
701 // that will get out of scope at the end of this function. We can't delete it
702 // right now, because there might be global observables in the model that
703 // first need to be redirected to the new dataset with a later call to
704 // RooAbsArg::recursiveRedirectServers.
705 std::unique_ptr<RooAbsData> oldOwnedData;
706 if (_ownData) {
707 oldOwnedData.reset(_dataClone);
708 _dataClone = nullptr ;
709 }
710
711 if (!cloneData && _rangeName.size()>0) {
712 coutW(InputArguments) << "RooAbsOptTestStatistic::setData(" << GetName() << ") WARNING: test statistic was constructed with range selection on data, "
713 << "ignoring request to _not_ clone the input dataset" << endl ;
714 cloneData = true ;
715 }
716
717 if (cloneData) {
718 // Cloning input dataset
719 if (_rangeName.empty()) {
720 _dataClone = (RooAbsData*) indata.reduce(*indata.get()) ;
721 } else {
723 }
724 _ownData = true ;
725
726 } else {
727
728 // Taking input dataset
729 _dataClone = &indata ;
730 _ownData = ownNewData ;
731
732 }
733
734 // Attach function clone to dataset
736 _dataClone->setDirtyProp(false) ;
737 _data = _dataClone ;
738
739 // ReCache constant nodes with dataset
740 if (_cachedNodes.getSize()>0) {
742 }
743
744 // Adjust internal event count
745 setEventCount(indata.numEntries()) ;
746
747 setValueDirty() ;
748
749 // It would be unusual if the global observables are used in the likelihood
750 // outside of the constraint terms, but if they are we have to be consistent
751 // and also redirect them to the snapshots in the dataset if appropriate.
754 }
755
756 return true ;
757}
758
759
760
761
762////////////////////////////////////////////////////////////////////////////////
763
765{
766 if (_sealed) {
767 bool notice = (sealNotice() && strlen(sealNotice())) ;
768 coutW(ObjectHandling) << "RooAbsOptTestStatistic::data(" << GetName()
769 << ") WARNING: object sealed by creator - access to data is not permitted: "
770 << (notice?sealNotice():"<no user notice>") << endl ;
771 static RooDataSet dummy ("dummy","dummy",RooArgSet()) ;
772 return dummy ;
773 }
774 return *_dataClone ;
775}
776
777
778////////////////////////////////////////////////////////////////////////////////
779
781{
782 if (_sealed) {
783 bool notice = (sealNotice() && strlen(sealNotice())) ;
784 coutW(ObjectHandling) << "RooAbsOptTestStatistic::data(" << GetName()
785 << ") WARNING: object sealed by creator - access to data is not permitted: "
786 << (notice?sealNotice():"<no user notice>") << endl ;
787 static RooDataSet dummy ("dummy","dummy",RooArgSet()) ;
788 return dummy ;
789 }
790 return *_dataClone ;
791}
792
793
794////////////////////////////////////////////////////////////////////////////////
795/// Inspect PDF to find out if we are doing a binned fit to a 1-dimensional unbinned PDF.
796/// If this is the case, enable finer sampling of bins by wrapping PDF into a RooBinSamplingPdf.
797/// The member _integrateBinsPrecision decides how we act:
798/// - < 0: Don't do anything.
799/// - = 0: Only enable feature if fitting unbinned PDF to RooDataHist.
800/// - > 0: Enable as requested.
802
803 auto& pdf = static_cast<RooAbsPdf&>(*_funcClone);
806 _funcClone = newPdf.release();
807 }
808
809}
810
811
812/// Returns a suffix string that is unique for RooAbsOptTestStatistic
813/// instances that don't share the same cloned input data object.
815 return Form("_%lx", _dataClone->uniqueId().value()) ;
816}
817
#define e(i)
Definition RSha256.hxx:103
#define coutI(a)
#define cxcoutI(a)
#define coutW(a)
#define cxcoutW(a)
#define coutE(a)
#define ClassImp(name)
Definition Rtypes.h:377
static void indent(ostringstream &buf, int indent_level)
char name[80]
Definition TGX11.cxx:110
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
Definition TString.cxx:2467
bool recursiveRedirectServers(const RooAbsCollection &newServerList, bool mustReplaceAll=false, bool nameChange=false, bool recurseInNewSet=true)
Recursively replace all servers with the new servers in newSet.
RooFit::OwningPtr< RooArgSet > getParameters(const RooAbsData *data, bool stripDisconnected=true) const
Create a list of leaf nodes in the arg tree starting with ourself as top node that don't match any of...
RooFit::OwningPtr< RooArgSet > getObservables(const RooArgSet &set, bool valueOnly=true) const
Given a set of possible observables, return the observables that this PDF depends on.
bool addOwnedComponents(const RooAbsCollection &comps)
Take ownership of the contents of 'comps'.
bool findConstantNodes(const RooArgSet &observables, RooArgSet &cacheList)
Find branch nodes with all-constant parameters, and add them to the list of nodes that can be cached ...
void printCompactTree(const char *indent="", const char *fileName=nullptr, const char *namePat=nullptr, RooAbsArg *client=nullptr)
Print tree structure of expression tree on stdout, or to file if filename is specified.
void setValueDirty()
Mark the element dirty. This forces a re-evaluation when a value is requested.
Definition RooAbsArg.h:487
bool getAttribute(const Text_t *name) const
Check if a named attribute is set. By default, all attributes are unset.
virtual void optimizeCacheMode(const RooArgSet &observables)
Activate cache mode optimization with given definition of observables.
void setAttribute(const Text_t *name, bool value=true)
Set (default) or clear a named boolean attribute of this object.
void branchNodeServerList(RooAbsCollection *list, const RooAbsArg *arg=nullptr, bool recurseNonDerived=false) const
Fill supplied list with all branch nodes of the arg tree starting with ourself as top node.
virtual RooAbsReal * highBoundFunc() const
Return pointer to RooAbsReal parameterized upper bound, if any.
virtual RooAbsReal * lowBoundFunc() const
Return pointer to RooAbsReal parameterized lower bound, if any.
RooAbsCollection is an abstract container object that can hold multiple RooAbsArg objects.
RooAbsCollection * selectByAttrib(const char *name, bool value) const
Create a subset of the current collection, consisting only of those elements with the specified attri...
virtual void removeAll()
Remove all arguments from our set, deleting them if we own them.
virtual bool remove(const RooAbsArg &var, bool silent=false, bool matchByNameOnly=false)
Remove the specified argument from our list.
Int_t getSize() const
Return the number of elements in the collection.
virtual bool add(const RooAbsArg &var, bool silent=false)
Add the specified argument to list.
void setAttribAll(const Text_t *name, bool value=true)
Set given attribute in each element of the collection by calling each elements setAttribute() functio...
Storage_t::size_type size() const
RooAbsArg * first() const
bool selectCommon(const RooAbsCollection &refColl, RooAbsCollection &outColl) const
Create a subset of the current collection, consisting only of those elements that are contained as we...
RooAbsArg * find(const char *name) const
Find object with given name in list.
virtual const RooAbsArg * cacheOwner()=0
virtual void forceCacheUpdate()
RooAbsData is the common abstract base class for binned and unbinned datasets.
Definition RooAbsData.h:59
virtual const RooArgSet * get() const
Definition RooAbsData.h:103
RooAbsDataStore * store()
Definition RooAbsData.h:79
RooFit::UniqueId< RooAbsData > const & uniqueId() const
Returns a unique ID that is different for every instantiated RooAbsData object.
Definition RooAbsData.h:321
void setDirtyProp(bool flag)
Control propagation of dirty flags from observables in dataset.
virtual void setArgStatus(const RooArgSet &set, bool active)
virtual void cacheArgs(const RooAbsArg *owner, RooArgSet &varSet, const RooArgSet *nset=nullptr, bool skipZeroWeights=false)
Internal method – Cache given set of functions with data.
virtual void optimizeReadingWithCaching(RooAbsArg &arg, const RooArgSet &cacheList, const RooArgSet &keepObsList)
Prepare dataset for use with cached constant terms listed in 'cacheList' of expression 'arg'.
bool hasFilledCache() const
virtual Int_t numEntries() const
Return number of entries in dataset, i.e., count unweighted entries.
RooArgSet const * getGlobalObservables() const
Returns snapshot of global observables stored in this data.
Definition RooAbsData.h:301
virtual void resetCache()
Internal method – Remove cached function values.
RooAbsData * reduce(const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg(), const RooCmdArg &arg3=RooCmdArg(), const RooCmdArg &arg4=RooCmdArg(), const RooCmdArg &arg5=RooCmdArg(), const RooCmdArg &arg6=RooCmdArg(), const RooCmdArg &arg7=RooCmdArg(), const RooCmdArg &arg8=RooCmdArg())
Create a reduced copy of this dataset.
void attachBuffers(const RooArgSet &extObs)
RooAbsOptTestStatistic is the abstract base class for test statistics objects that evaluate a functio...
bool setDataSlave(RooAbsData &data, bool cloneData=true, bool ownNewDataAnyway=false) override
Change dataset that is used to given one.
~RooAbsOptTestStatistic() override
Destructor.
RooAbsReal * _funcClone
Pointer to internal clone of input function.
bool _sealed
Is test statistic sealed – i.e. no access to data.
void optimizeConstantTerms(bool, bool=true)
Driver function to activate global constant term optimization.
double combinedValue(RooAbsReal **gofArray, Int_t nVal) const override
Method to combined test statistic results calculated into partitions into the global result.
RooAbsReal * _origFunc
Original function.
bool _ownData
Do we own the dataset.
void optimizeCaching()
This method changes the value caching logic for all nodes that depends on any of the observables as d...
const char * sealNotice() const
RooAbsData * _origData
Original data.
RooArgSet * _funcObsSet
List of observables in the pdf expression.
void constOptimizeTestStatistic(ConstOpCode opcode, bool doAlsoTrackingOpt=true) override
Driver function to propagate constant term optimizations in test statistic.
void setUpBinSampling()
Inspect PDF to find out if we are doing a binned fit to a 1-dimensional unbinned PDF.
bool redirectServersHook(const RooAbsCollection &newServerList, bool mustReplaceAll, bool nameChange, bool isRecursive) override
Catch server redirect calls and forward to internal clone of function.
RooArgSet _cachedNodes
! List of nodes that are cached as constant expressions
void initSlave(RooAbsReal &real, RooAbsData &indata, const RooArgSet &projDeps, const char *rangeName, const char *addCoefRangeName)
void printCompactTreeHook(std::ostream &os, const char *indent="") override
Catch print hook function and forward to function clone.
RooArgSet * _normSet
Pointer to set with observables used for normalization.
const char * cacheUniqueSuffix() const override
Returns a suffix string that is unique for RooAbsOptTestStatistic instances that don't share the same...
RooArgSet * _funcCloneSet
Set owning all components of internal clone of input function.
RooAbsData * _dataClone
Pointer to internal clone if input data.
virtual RooArgSet requiredExtraObservables() const
RooAbsOptTestStatistic()
Default Constructor.
RooArgSet * _projDeps
Set of projected observable.
RooAbsRealLValue is the common abstract base class for objects that represent a real value that may a...
virtual double getMax(const char *name=nullptr) const
Get maximum of currently defined range.
virtual double getMin(const char *name=nullptr) const
Get minimum of currently defined range.
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
Definition RooAbsReal.h:62
double getVal(const RooArgSet *normalisationSet=nullptr) const
Evaluate object.
Definition RooAbsReal.h:91
virtual double getValV(const RooArgSet *normalisationSet=nullptr) const
Return value of object.
virtual void fixAddCoefNormalization(const RooArgSet &addNormSet=RooArgSet(), bool force=true)
Fix the interpretation of the coefficient of any RooAddPdf component in the expression tree headed by...
bool redirectServersHook(const RooAbsCollection &newServerList, bool mustReplaceAll, bool nameChange, bool isRecursiveStep) override
A buffer for reading values from trees.
virtual void fixAddCoefRange(const char *rangeName=nullptr, bool force=true)
Fix the interpretation of the coefficient of any RooAddPdf component in the expression tree headed by...
RooAbsTestStatistic is the abstract base class for all test statistics.
double _evalCarry
! carry of Kahan sum in evaluatePartition
std::string _addCoefRangeName
Name of reference to be used for RooAddPdf components.
GOFOpMode operMode() const
RooSetProxy _paramSet
Parameters of the test statistic (=parameters of the input function)
RooAbsReal * _func
Pointer to original input function.
void printCompactTreeHook(std::ostream &os, const char *indent="") override
Add extra information on component test statistics when printing itself as part of a tree structure.
std::string _rangeName
Name of range in which to calculate test statistic.
void constOptimizeTestStatistic(ConstOpCode opcode, bool doAlsoTrackingOpt=true) override
Forward constant term optimization management calls to component test statistics.
void setEventCount(Int_t nEvents)
virtual double getCarry() const
RooAbsData * _data
Pointer to original input dataset.
const bool _takeGlobalObservablesFromData
If the global observable values are taken from data.
bool redirectServersHook(const RooAbsCollection &newServerList, bool mustReplaceAll, bool nameChange, bool isRecursive) override
Forward server redirect calls to component test statistics.
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition RooArgSet.h:55
RooArgSet * snapshot(bool deepCopy=true) const
Use RooAbsCollection::snapshot(), but return as RooArgSet.
Definition RooArgSet.h:178
static std::unique_ptr< RooAbsPdf > create(RooAbsPdf &pdf, RooAbsData const &data, double precision)
Creates a wrapping RooBinSamplingPdf if appropriate.
bool add(const RooAbsArg &var, bool valueServer, bool shapeServer, bool silent)
Overloaded RooCollection_t::add() method insert object into set and registers object as server to own...
RooDataSet is a container class to hold unbinned data.
Definition RooDataSet.h:57
static void softAbort()
Soft abort function that interrupts macro execution but doesn't kill ROOT.
RooProdPdf is an efficient implementation of a product of PDFs of the form.
Definition RooProdPdf.h:33
RooArgSet * getConnectedParameters(const RooArgSet &observables) const
Return all parameter constraint p.d.f.s on parameters listed in constrainedParams.
RooRealVar represents a variable that can be changed from the outside.
Definition RooRealVar.h:40
const RooAbsBinning & getBinning(const char *name=nullptr, bool verbose=true, bool createOnTheFly=false) const override
Return binning definition with name.
RooVectorDataStore uses std::vectors to store data columns.
TObject * Clone(const char *newname="") const override
Make a clone of an object using the Streamer facility.
Definition TNamed.cxx:74
const char * GetName() const override
Returns name of object.
Definition TNamed.h:47
virtual const char * ClassName() const
Returns name of class to which the object belongs.
Definition TObject.cxx:207
Basic string class.
Definition TString.h:139
const char * Data() const
Definition TString.h:380
RooCmdArg SelectVars(const RooArgSet &vars)
RooCmdArg CutRange(const char *rangeName)
Double_t y[n]
Definition legend1.C:17
const Int_t n
Definition legend1.C:16
std::vector< std::string > Split(std::string_view str, std::string_view delims, bool skipEmpty=false)
Splits a string at each character in delims.
std::unique_ptr< T > cloneTreeWithSameParameters(T const &arg, RooArgSet const *observables=nullptr)
Clone RooAbsArg object and reattach to original parameters.
Definition RooHelpers.h:143
constexpr Value_t value() const
Return numerical value of ID.
Definition UniqueId.h:59
static uint64_t sum(uint64_t i)
Definition Factory.cxx:2345