1#ifndef TMVA_SOFIE_ROPERATOR_LAYERNORMALIZATION
2#define TMVA_SOFIE_ROPERATOR_LAYERNORMALIZATION
11namespace Experimental {
55 const std::string &nameScale,
const std::string &nameB,
const std::string &nameY,
56 const std::string &nameMean,
const std::string &nameInvStdDev)
69 throw std::runtime_error(
"TMVA::SOFIE - Tensor " +
fNX +
" not found.");
122 std::stringstream out;
124 out <<
SP <<
"// Broadcasting the bias of LayerNormlization op\n";
126 out <<
SP <<
SP <<
"float* data = TMVA::Experimental::SOFIE::UTILITY::UnidirectionalBroadcast<float>(tensor_";
129 out <<
SP <<
"delete[] data;\n";
137 OpName =
"op_" + OpName;
139 throw std::runtime_error(
"TMVA::SOFIE LayerNormalization operator " + OpName +
140 " called to generate without beging initialized first.");
143 throw std::runtime_error(
"TMVA::SOFIE LayerNormalization operator not "
144 "implemented for input tensor of size > 5.");
147 std::stringstream out;
149 out <<
SP <<
"// Operator " << OpName <<
"\n";
152 out <<
SP <<
"std::vector<size_t> " << OpName <<
"_InputShape ({";
153 for (
size_t i = 0; i <
fSize; i++) {
160 std::string inputShape = OpName +
"_InputShape";
163 std::string InputIndex =
"axis_0 * " + std::to_string(strides[0]);
164 for (
size_t i = 1; i <
fSize; i++) {
165 InputIndex +=
" + axis_" + std::to_string(i) +
" * " + std::to_string(strides[i]);
169 std::string axesIndex =
"axis_" + std::to_string(0) +
" * " + std::to_string(axesStrides[0]);
170 for (
size_t i = 1; i <
fAxis; i++) {
171 axesIndex +=
" + axis_" + std::to_string(i) +
" * " + std::to_string(axesStrides[i]);
175 std::string normalizedIndex =
"axis_" + std::to_string(
fAxis) +
" * " + std::to_string(normalizedStrides[0]);
177 normalizedIndex +=
" + axis_" + std::to_string(i) +
" * " + std::to_string(normalizedStrides[i -
fAxis]);
182 out <<
SP <<
"for (size_t i = 0; i < " <<
fLength <<
"; i++) {\n";
183 out <<
SP <<
SP <<
"tensor_" <<
fNCastedX <<
"[i] = " <<
"static_cast<float>(tensor_" <<
fNX;
188 out <<
SP <<
"// Compute the mean\n";
190 for (
size_t i = 0; i <
fAxis; i++) {
191 std::string iIdx =
"axis_" + std::to_string(i);
192 out <<
SP <<
"for (size_t " << iIdx <<
" = 0; " << iIdx <<
" < " << inputShape;
193 out <<
"[" << i <<
"]; " << iIdx <<
"++) {\n";
195 out <<
SP <<
SP <<
fType <<
" sum = 0.;\n";
198 std::string jIdx =
"axis_" + std::to_string(j);
199 out <<
SP <<
SP <<
"for (size_t " << jIdx <<
" = 0; " << jIdx <<
" < " << inputShape;
200 out <<
"[" << j <<
"]; " << jIdx <<
"++) {\n";
202 out <<
SP <<
SP <<
SP <<
"sum += tensor_" <<
fNX <<
"[" << InputIndex <<
"];\n";
204 out <<
SP <<
SP <<
"}\n";
206 out <<
SP <<
SP <<
"tensor_" <<
fNMean <<
"[" << axesIndex <<
"] = sum / " <<
fType <<
"(";
212 out <<
SP <<
"// Compute the inverse Standard Deviation\n";
214 for (
size_t i = 0; i <
fAxis; i++) {
215 std::string iIdx =
"axis_" + std::to_string(i);
216 out <<
SP <<
"for (size_t " << iIdx <<
" = 0; " << iIdx <<
" < " << inputShape;
217 out <<
"[" << i <<
"]; " << iIdx <<
"++){\n";
220 out <<
SP <<
SP <<
fType <<
" sum = 0.;\n";
223 std::string jIdx =
"axis_" + std::to_string(j);
224 out <<
SP <<
SP <<
"for (size_t " << jIdx <<
" = 0; " << jIdx <<
" < " << inputShape;
225 out <<
"[" << j <<
"]; " << jIdx <<
"++){\n";
227 out <<
SP <<
SP <<
SP <<
"sum += std::pow(tensor_" <<
fNX <<
"[" << InputIndex <<
"] - tensor_";
228 out <<
fNMean <<
"[" << axesIndex <<
"], 2);\n";
230 out <<
SP <<
SP <<
"}\n";
232 out <<
SP <<
SP <<
"tensor_" <<
fNInvStdDev <<
"[" << axesIndex <<
"] = 1 / std::sqrt(";
234 for (
size_t i = 0; i <
fAxis; i++) {
239 out <<
"// NormalizedX = InvStdDev * (CastedX - Mean)\n";
240 for (
size_t i = 0; i <
fAxis; i++) {
241 std::string iIdx =
"axis_" + std::to_string(i);
242 out <<
SP <<
"for (size_t " << iIdx <<
" = 0; " << iIdx <<
" < " << inputShape;
243 out <<
"[" << i <<
"]; " << iIdx <<
"++){\n";
246 std::string jIdx =
"axis_" + std::to_string(j);
247 out <<
SP <<
SP <<
"for (size_t " << jIdx <<
" = 0; " << jIdx <<
" < " << inputShape;
248 out <<
"[" << j <<
"]; " << jIdx <<
"++){\n";
252 out <<
"] - tensor_" <<
fNMean <<
"[" << axesIndex <<
"])\n";
254 out <<
SP <<
SP <<
"}\n";
259 out <<
"// Y = Scale o NormalizedX";
260 for (
size_t i = 0; i <
fAxis; i++) {
261 std::string iIdx =
"axis_" + std::to_string(i);
262 out <<
SP <<
"for (size_t " << iIdx <<
" = 0; " << iIdx <<
" < " << inputShape;
263 out <<
"[" << i <<
"]; " << iIdx <<
"++){\n";
266 std::string jIdx =
"axis_" + std::to_string(j);
267 out <<
SP <<
SP <<
"for (size_t " << jIdx <<
" = 0; " << jIdx <<
" < " << inputShape;
268 out <<
"[" << j <<
"]; " << jIdx <<
"++){\n";
270 out <<
SP <<
SP <<
SP <<
"tensor_" <<
fNY <<
"[" << InputIndex <<
"] = tensor_" <<
fNScale;
271 out <<
"[" << axesIndex <<
"] * static_cast<" <<
fType <<
">(tensor_" <<
fNCastedX <<
"[" << InputIndex;
274 out <<
SP <<
SP <<
"}\n";
280 out <<
SP <<
"// Y = Scale o InvStdDev (X - Mean)\n";
281 for (
size_t i = 0; i <
fAxis; i++) {
282 std::string iIdx =
"axis_" + std::to_string(i);
283 out <<
SP <<
"for (size_t " << iIdx <<
" = 0; " << iIdx <<
" < " << inputShape;
284 out <<
"[" << i <<
"]; " << iIdx <<
"++){\n";
287 std::string jIdx =
"axis_" + std::to_string(j);
288 out <<
SP <<
SP <<
"for (size_t " << jIdx <<
" = 0; " << jIdx <<
" < " << inputShape;
289 out <<
"[" << j <<
"]; " << jIdx <<
"++){\n";
291 out <<
SP <<
SP <<
SP <<
"tensor_" <<
fNY <<
"[" << InputIndex <<
"] = tensor_" <<
fNScale;
292 out <<
"[" << normalizedIndex <<
"] * tensor_" <<
fNInvStdDev <<
"[" << axesIndex;
293 out <<
"] * (tensor_" <<
fNX <<
"[" << InputIndex <<
"] - tensor_" <<
fNMean <<
"[";
294 out << axesIndex <<
"]);\n";
296 out <<
SP <<
SP <<
"}\n";
305 out <<
SP <<
"// Add the bias to Y\n";
306 out <<
SP <<
"int " << OpName <<
"_n = " <<
fLength <<
";\n";
307 out <<
SP <<
"float " << OpName <<
"_alpha = 1.;\n";
308 out <<
SP <<
"int " << OpName <<
"_inc = 1;\n";
309 out <<
SP <<
"BLAS::saxpy_(&" << OpName <<
"_n, &" << OpName <<
"_alpha, " << Bias <<
", &";
310 out << OpName <<
"_inc, " <<
"tensor_" <<
fNY <<
", &" << OpName <<
"_inc);\n";
316 std::vector<std::string>
GetBlasRoutines()
override {
return { std::string(
"Axpy") }; }
318 std::vector<std::string>
GetStdLibs()
override {
return { std::string(
"cmath") }; }
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
const ETensorType & GetTensorType(std::string name)
void AddIntermediateTensor(std::string tensor_name, ETensorType type, std::vector< std::size_t > shape)
bool CheckIfTensorAlreadyExist(std::string tensor_name)
const std::vector< size_t > & GetTensorShape(std::string name)
std::vector< std::string > GetBlasRoutines() override
ROperator_LayerNormalization()
std::vector< size_t > fShapeX
std::vector< size_t > fShapeScale
std::vector< size_t > fShapeMean
std::vector< size_t > fShapeInvStdDev
ROperator_LayerNormalization(int64_t axis, float epsilon, size_t stashType, const std::string &nameX, const std::string &nameScale, const std::string &nameB, const std::string &nameY, const std::string &nameMean, const std::string &nameInvStdDev)
std::vector< std::string > GetStdLibs() override
std::string GenerateInitCode() override
std::vector< size_t > fNormalizedShape
void Initialize(RModel &model) override
std::vector< size_t > fShapeB
std::string Generate(std::string OpName) override
std::vector< std::vector< size_t > > ShapeInference(std::vector< std::vector< size_t > > input) override
std::string fNBroadcastedB
std::vector< size_t > fAxesShape
std::vector< ETensorType > TypeInference(std::vector< ETensorType > input) override
std::string fNNormalizedX
std::vector< size_t > fShapeY
const std::string SP
space used to correctly indent the generated C++ code
std::vector< size_t > ComputeStrideFromShape(const std::vector< size_t > &shape)
compute stride of a tensor given its shape (assume layout is row-major)
std::string ConvertShapeToString(std::vector< size_t > shape)
std::string ConvertTypeToString(ETensorType type)
ETensorType ConvertStringToType(std::string type)
std::size_t ConvertShapeToLength(std::vector< size_t > shape)
create variable transformations