3#include "onnx_proto3.pb.h"
6namespace Experimental {
12 auto input_name = nodeproto.input(0);
16 throw std::runtime_error(
"TMVA::SOFIE ONNX Parser RNN op has input tensor " + input_name +
17 " but its type is not yet registered");
20 std::unique_ptr<ROperator> op;
22 std::vector<float> attr_activation_alpha = {};
23 std::vector<float> attr_activation_beta = {};
24 std::vector<std::string> attr_activations = {};
26 std::string attr_direction =
"forward";
27 size_t attr_hidden_size = 0;
28 size_t attr_layout = 0;
30 for (
int_t i = 0; i < nodeproto.attribute_size(); i++) {
31 std::string attribute_name = nodeproto.attribute(i).name();
32 if (attribute_name ==
"activation_alpha") {
33 attr_activation_alpha = {nodeproto.attribute(i).floats().begin(), nodeproto.attribute(i).floats().end()};
34 }
else if (attribute_name ==
"activation_beta") {
35 attr_activation_beta = {nodeproto.attribute(i).floats().begin(), nodeproto.attribute(i).floats().end()};
36 }
else if (attribute_name ==
"activations") {
37 attr_activations = {nodeproto.attribute(i).strings().begin(), nodeproto.attribute(i).strings().end()};
38 }
else if (attribute_name ==
"clip") {
39 attr_clip = nodeproto.attribute(i).i();
40 }
else if (attribute_name ==
"direction") {
41 attr_direction = nodeproto.attribute(i).s();
42 }
else if (attribute_name ==
"hidden_size") {
43 attr_hidden_size = nodeproto.attribute(i).i();
44 }
else if (attribute_name ==
"layout") {
45 attr_layout = nodeproto.attribute(i).i();
47 std::cout <<
"TMVA SOFIE Warning - Model Loading - Attribute " << attribute_name <<
" in OperatorNode "
48 << nodeproto.name() <<
" is not defined in ONNX IR and not applied!\n";
53 std::string name_b =
"";
54 std::string name_sequence_lens =
"";
55 std::string name_initial_h =
"";
56 std::string name_y =
"";
57 std::string name_y_h =
"";
58 if (nodeproto.input_size() > 3) {
59 name_b = nodeproto.input(3);
61 if (nodeproto.input_size() > 4) {
62 name_sequence_lens = nodeproto.input(4);
64 if (nodeproto.input_size() > 5) {
65 name_initial_h = nodeproto.input(5);
67 if (nodeproto.output_size() > 0) {
68 name_y = nodeproto.output(0);
70 if (nodeproto.output_size() > 1) {
71 name_y_h = nodeproto.output(1);
76 op.reset(
new ROperator_RNN<float>(attr_activation_alpha, attr_activation_beta, attr_activations, attr_clip,
77 attr_direction, attr_hidden_size, attr_layout, nodeproto.input(0),
78 nodeproto.input(1), nodeproto.input(2), name_b, name_sequence_lens,
79 name_initial_h, name_y, name_y_h));
82 throw std::runtime_error(
"TMVA::SOFIE - Unsupported - Operator RNN does not yet support input type " +
83 std::to_string(
static_cast<int>(input_type)));
86 for (
const auto &
name : {name_y, name_y_h}) {
bool IsRegisteredTensorType(const std::string &)
void RegisterTensorType(const std::string &, ETensorType)
ETensorType GetTensorType(const std::string &name)
Recurrent Neural Network operator.
ParserFuncSignature ParseRNN
std::function< std::unique_ptr< ROperator >(RModelParser_ONNX &, const onnx::NodeProto &)> ParserFuncSignature
create variable transformations