87   fAdaptiveSampling(false),
 
   88   fAdditionalNToysFactor(1.),
 
   89   fSaveBeltToFile(false),
 
  116    oocoutI(
f,
Contents) << 
"NeymanConstruction saving ConfidenceBelt to file SamplingDistributions.root" << endl;
 
  117    f = 
new TFile(
"SamplingDistributions.root",
"recreate");
 
  128                   "points in interval",
 
  157    double upperEdgeOfAcceptance, upperEdgeMinusSigma, upperEdgePlusSigma;
 
  158    double lowerEdgeOfAcceptance, lowerEdgeMinusSigma, lowerEdgePlusSigma;
 
  159    Int_t additionalMC=0;
 
  177    totalMC = (
Int_t) tmc;
 
  187   additionalMC = 2*totalMC; 
 
  193           oocoutE(
nullptr,
Eval) << 
"Neyman Construction: error generating sampling distribution" << endl;
 
  196   totalMC=samplingDist->
GetSize();
 
  202   upperEdgeOfAcceptance =
 
  204                sigma, upperEdgePlusSigma);
 
  207              sigma, upperEdgeMinusSigma);
 
  210   lowerEdgeOfAcceptance =
 
  212                sigma, lowerEdgePlusSigma);
 
  215              sigma, lowerEdgeMinusSigma);
 
  218        << 
"total MC = " << totalMC
 
  219        << 
" this test stat = " << thisTestStatistic << endl
 
  220        << 
" upper edge -1sigma = " << upperEdgeMinusSigma
 
  221        << 
", upperEdge = "<<upperEdgeOfAcceptance
 
  222        << 
", upper edge +1sigma = " << upperEdgePlusSigma << endl
 
  223        << 
" lower edge -1sigma = " << lowerEdgeMinusSigma
 
  224        << 
", lowerEdge = "<<lowerEdgeOfAcceptance
 
  225        << 
", lower edge +1sigma = " << lowerEdgePlusSigma << endl;
 
  227         (thisTestStatistic <= upperEdgeOfAcceptance &&
 
  228          thisTestStatistic > upperEdgeMinusSigma)
 
  229         || (thisTestStatistic >= upperEdgeOfAcceptance &&
 
  230        thisTestStatistic < upperEdgePlusSigma)
 
  231         || (thisTestStatistic <= lowerEdgeOfAcceptance &&
 
  232        thisTestStatistic > lowerEdgeMinusSigma)
 
  233         || (thisTestStatistic >= lowerEdgeOfAcceptance &&
 
  234        thisTestStatistic < lowerEdgePlusSigma)
 
  235      ) && (totalMC < 100./
fSize)
 
  242         oocoutE(
nullptr,
Eval) << 
"Neyman Construction: error generating sampling distribution" << endl;
 
  246      lowerEdgeOfAcceptance =
 
  248      upperEdgeOfAcceptance =
 
  256                 lowerEdgeOfAcceptance,
 
  257                 upperEdgeOfAcceptance);
 
  262            << 
" total MC = " << samplingDist->
GetSize()
 
  263            << 
" this test stat = " << thisTestStatistic << endl;
 
  265    for (
auto const *myarg : static_range_cast<RooRealVar *> (*point)){
 
  266      ooccoutP(samplingDist,
Eval) << myarg->GetName() << 
"=" << myarg->getVal() << 
" ";
 
  268    ooccoutP(samplingDist,
Eval) << 
"[" << lowerEdgeOfAcceptance << 
", " 
  269             << upperEdgeOfAcceptance << 
"] " << 
" in interval = " <<
 
  270      (thisTestStatistic >= lowerEdgeOfAcceptance && thisTestStatistic <= upperEdgeOfAcceptance)
 
  274    if(thisTestStatistic >= lowerEdgeOfAcceptance && thisTestStatistic <= upperEdgeOfAcceptance) {
 
  277      pointsInInterval->
add(*point);
 
  283      samplingDist->
Write();
 
  284      string tmpName = 
"hist_";
 
  285      tmpName+=samplingDist->
GetName();
 
  286      TH1F* 
h = 
new TH1F(tmpName.c_str(),
"",500,0.,5.);
 
  287      for(
int ii=0; ii<samplingDist->
GetSize(); ++ii){
 
  297  oocoutI(pointsInInterval,
Eval) << npass << 
" points in interval" << endl;
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
 
void assign(const RooAbsCollection &other) const
Sets the value, cache and constant attribute of any argument in our set that also appears in the othe...
 
RooAbsData is the common abstract base class for binned and unbinned datasets.
 
virtual const RooArgSet * get() const
 
virtual Int_t numEntries() const
Return number of entries in dataset, i.e., count unweighted entries.
 
RooArgSet is a container object that can hold multiple RooAbsArg objects.
 
RooDataSet is a container class to hold unbinned data.
 
void add(const RooArgSet &row, double weight=1.0, double weightError=0.0) override
Add one ore more rows of data.
 
void AddAcceptanceRegion(RooArgSet &, AcceptanceRegion region, double cl=-1., double leftside=-1.)
add after creating a region
 
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
 
const RooArgSet * GetParametersOfInterest() const
get RooArgSet containing the parameter of interest (return nullptr if not existing)
 
NeymanConstruction is a concrete implementation of the NeymanConstruction interface that,...
 
bool fAdaptiveSampling
controls use of adaptive sampling algorithm
 
RooAbsData * fPointsToTest
 
double fSize
size of the test (eg. specified rate of Type I error)
 
PointSetInterval * GetInterval() const override
Main interface to get a ConfInterval (will be a PointSetInterval)
 
ConfidenceBelt * fConfBelt
 
~NeymanConstruction() override
default constructor if(fOwnsWorkspace && fWS) delete fWS; if(fConfBelt) delete fConfBelt;
 
bool fSaveBeltToFile
controls use if ConfidenceBelt should be saved to a TFile
 
RooAbsData & fData
data set
 
NeymanConstruction(RooAbsData &data, ModelConfig &model)
NeymanConstruction();.
 
double fAdditionalNToysFactor
give user ability to ask for more toys
 
bool fCreateBelt
controls use if ConfidenceBelt should be saved to a TFile
 
TestStatSampler * fTestStatSampler
 
PointSetInterval is a concrete implementation of the ConfInterval interface.
 
This class simply holds a sampling distribution of some test statistic.
 
Int_t GetSize() const
size of samples
 
double InverseCDF(double pvalue)
get the inverse of the Cumulative distribution function
 
const std::vector< double > & GetSamplingDistribution() const
Get test statistics values.
 
virtual void SetParametersForTestStat(const RooArgSet &)=0
specify the values of parameters used when evaluating test statistic
 
virtual double EvaluateTestStatistic(RooAbsData &data, RooArgSet ¶msOfInterest)=0
Main interface to evaluate the test statistic on a dataset.
 
virtual SamplingDistribution * GetSamplingDistribution(RooArgSet ¶msOfInterest)=0
Main interface to get a ConfInterval, pure virtual.
 
ToyMCSampler is an implementation of the TestStatSampler interface.
 
virtual SamplingDistribution * AppendSamplingDistribution(RooArgSet &allParameters, SamplingDistribution *last, Int_t additionalMC)
Extended interface to append to sampling distribution more samples.
 
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
 
1-D histogram with a float per channel (see TH1 documentation)}
 
const char * GetName() const override
Returns name of object.
 
virtual Int_t Write(const char *name=nullptr, Int_t option=0, Int_t bufsize=0)
Write this object to the current directory.
 
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
 
Namespace for the RooStats classes.
 
Short_t Min(Short_t a, Short_t b)
Returns the smallest of a and b.