59   asfactor(
"as.factor"),
 
   97     asfactor(
"as.factor"),
 
  148      Error(
"Init", 
"R's package RSNNS can not be loaded.");
 
  149      Log() << kFATAL << 
" R's package RSNNS can not be loaded." 
  166   if (
Data()->GetNTrainingEvents() == 0) 
Log() << kFATAL << 
"<Train> Data() has zero events" << 
Endl;
 
  195            r[
"RMLPModel"] << Model;
 
  196            r << 
"save(RMLPModel,file='" + path + 
"')";
 
  224                                                     other functions, these have to be given in a named list. See\ 
  225                                                     the pruning demos for further explanation.the update function to use");
 
  233      Log() << kERROR << 
" fMaxit <=0... that does not work !! " 
  234            << 
" I set it to 50 .. just so that the program does not crash" 
  246   Log() << kINFO << 
"Testing Classification " << 
fNetType << 
" METHOD  " << 
Endl;
 
  260   for (
UInt_t i = 0; i < nvar; i++) {
 
  276   if (firstEvt > lastEvt || lastEvt > nEvents) lastEvt = nEvents;
 
  277   if (firstEvt < 0) firstEvt = 0;
 
  279   nEvents = lastEvt-firstEvt; 
 
  291   std::vector<std::vector<Float_t> > inputData(nvars);
 
  292   for (
UInt_t i = 0; i < nvars; i++) {
 
  293      inputData[i] =  std::vector<Float_t>(nEvents); 
 
  296   for (
Int_t ievt=firstEvt; ievt<lastEvt; ievt++) {
 
  299      assert(nvars == 
e->GetNVariables());
 
  300      for (
UInt_t i = 0; i < nvars; i++) {
 
  301         inputData[i][ievt] = 
e->GetValue(i);
 
  308   for (
UInt_t i = 0; i < nvars; i++) {
 
  314   std::vector<Double_t> mvaValues(nEvents);
 
  317   mvaValues = 
result.As<std::vector<Double_t>>(); 
 
  322      Log() << kINFO <<
Form(
"Dataset[%s] : ",
DataInfo().
GetName())<< 
"Elapsed time for evaluation of " << nEvents <<  
" events: " 
  335   TString path = GetWeightFileDir() +  
"/" + GetName() + 
".RData";
 
  339   r << 
"load('" + path + 
"')";
 
  341   r[
"RMLPModel"] >> Model;
 
  357   Log() << 
"Decision Trees and Rule-Based Models " << 
Endl;
 
#define REGISTER_METHOD(CLASS)
for example
 
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
 
void Error(const char *location, const char *msgfmt,...)
Use this function in case an error occurred.
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
 
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
 
This is a class to create DataFrames from ROOT to R.
 
static TRInterface & Instance()
static method to get an TRInterface instance reference
 
Bool_t Require(TString pkg)
Method to load an R's package.
 
Int_t Eval(const TString &code, TRObject &ans)
Method to eval R code and you get the result in a reference to TRObject.
 
This is a class to get ROOT's objects from R's objects.
 
OptionBase * DeclareOptionRef(T &ref, const TString &name, const TString &desc="")
 
Class that contains all the data information.
 
UInt_t GetNVariables() const
 
std::vector< TString > GetListOfVariables() const
returns list of variables
 
const Event * GetEvent() const
returns event without transformations
 
Types::ETreeType GetCurrentType() const
 
Long64_t GetNEvents(Types::ETreeType type=Types::kMaxTreeType) const
 
UInt_t GetNVariables() const
access the number of variables through the datasetinfo
 
void SetCurrentEvent(Long64_t ievt) const
 
std::vector< Float_t > & GetValues()
 
const char * GetName() const
 
Bool_t IsModelPersistence() const
 
const TString & GetWeightFileDir() const
 
const TString & GetMethodName() const
 
const Event * GetEvent() const
 
DataSetInfo & DataInfo() const
 
virtual void TestClassification()
initialization
 
void NoErrorCalc(Double_t *const err, Double_t *const errUpper)
 
Double_t GetMvaValue(Double_t *errLower=nullptr, Double_t *errUpper=nullptr)
 
static Bool_t IsModuleLoaded
 
void GetHelpMessage() const
 
Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
 
ROOT::R::TRFunctionImport predict
 
virtual std::vector< Double_t > GetMvaValues(Long64_t firstEvt=0, Long64_t lastEvt=-1, Bool_t logProgress=false)
get all the MVA values for the events of the current Data type
 
TString fUpdateFuncParams
 
virtual void TestClassification()
initialization
 
MethodRSNNS(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="")
 
std::vector< UInt_t > fFactorNumeric
 
ROOT::R::TRFunctionImport mlp
 
ROOT::R::TRObject * fModel
 
std::vector< std::string > fFactorTrain
 
ROOT::R::TRDataFrame fDfTrain
 
Timing information for training and evaluation of MVA methods.
 
TString GetElapsedTime(Bool_t Scientific=kTRUE)
returns pretty string with elapsed time
 
Singleton class for Global types used by TMVA.
 
const char * Data() const
 
const Rcpp::internal::NamedPlaceHolder & Label
 
create variable transformations
 
MsgLogger & Endl(MsgLogger &ml)