23#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION 
   24#include <numpy/arrayobject.h> 
   67   fBaseEstimator(
"None"),
 
   70   fAlgorithm(
"SAMME.R"),
 
   79   fBaseEstimator(
"None"),
 
   82   fAlgorithm(
"SAMME.R"),
 
  106      The base estimator from which the boosted ensemble is built.\ 
  107      Support for sample weighting is required, as well as proper `classes_`\ 
  108      and `n_classes_` attributes.");
 
  111      The maximum number of estimators at which boosting is terminated.\ 
  112      In case of perfect fit, the learning procedure is stopped early.");
 
  115      Learning rate shrinks the contribution of each classifier by\ 
  116      ``learning_rate``. There is a trade-off between ``learning_rate`` and\ 
  120      If 'SAMME.R' then use the SAMME.R real boosting algorithm.\ 
  121      ``base_estimator`` must support calculation of class probabilities.\ 
  122      If 'SAMME' then use the SAMME discrete boosting algorithm.\ 
  123      The SAMME.R algorithm typically converges faster than SAMME,\ 
  124      achieving a lower test error with fewer boosting iterations.");
 
  127      If int, random_state is the seed used by the random number generator;\ 
  128      If RandomState instance, random_state is the random number generator;\ 
  129      If None, the random number generator is the RandomState instance used\ 
  133      "Store trained classifier in this file");
 
  143            << 
" The options are Object or None." << 
Endl;
 
  148      Log() << kFATAL << 
"NEstimators <=0 ... that does not work!" << 
Endl;
 
  154      Log() << kFATAL << 
"LearningRate <=0 ... that does not work!" << 
Endl;
 
  161            << 
" The options are SAMME of SAMME.R." << 
Endl;
 
  169            << 
"If int, random_state is the seed used by the random number generator;" 
  170            << 
"If RandomState instance, random_state is the random number generator;" 
  171            << 
"If None, the random number generator is the RandomState instance used by `np.random`." << 
Endl;
 
  203   npy_intp dimsData[2];
 
  204   dimsData[0] = fNrowsTraining;
 
  206   PyArrayObject *  fTrainData = (PyArrayObject *)PyArray_SimpleNew(2, dimsData, NPY_FLOAT);
 
  208   float *TrainData = (
float *)(PyArray_DATA(fTrainData));
 
  210   npy_intp dimsClasses = (npy_intp) fNrowsTraining;
 
  211   PyArrayObject *  fTrainDataClasses = (PyArrayObject *)PyArray_SimpleNew(1, &dimsClasses, NPY_FLOAT);
 
  212   PyDict_SetItemString(
fLocalNS, 
"trainDataClasses", (
PyObject*)fTrainDataClasses);
 
  213   float *TrainDataClasses = (
float *)(PyArray_DATA(fTrainDataClasses));
 
  215   PyArrayObject * fTrainDataWeights = (PyArrayObject *)PyArray_SimpleNew(1, &dimsClasses, NPY_FLOAT);
 
  216   PyDict_SetItemString(
fLocalNS, 
"trainDataWeights", (
PyObject*)fTrainDataWeights);
 
  217   float *TrainDataWeights = (
float *)(PyArray_DATA(fTrainDataWeights));
 
  219   for (
int i = 0; i < fNrowsTraining; i++) {
 
  227      TrainDataClasses[i] = 
e->GetClass();
 
  230      TrainDataWeights[i] = 
e->GetWeight();
 
  234   PyRunString(
"classifier = sklearn.ensemble.AdaBoostClassifier(estimator=baseEstimator, n_estimators=nEstimators, learning_rate=learningRate, algorithm=algorithm, random_state=randomState)",
 
  235      "Failed to setup classifier");
 
  239   PyRunString(
"dump = classifier.fit(trainData, trainDataClasses, trainDataWeights)", 
"Failed to train classifier");
 
  244      Log() << kFATAL << 
"Can't create classifier object from AdaBoostClassifier" << 
Endl;
 
  270   if (firstEvt > lastEvt || lastEvt > nEvents) lastEvt = nEvents;
 
  271   if (firstEvt < 0) firstEvt = 0;
 
  272   nEvents = lastEvt-firstEvt;
 
  281            << 
" sample (" << nEvents << 
" events)" << 
Endl;
 
  287   PyArrayObject *pEvent= (PyArrayObject *)PyArray_SimpleNew(2, dims, NPY_FLOAT);
 
  288   float *pValue = (
float *)(PyArray_DATA(pEvent));
 
  290   for (
Int_t ievt=0; ievt<nEvents; ievt++) {
 
  299   PyArrayObject *
result = (PyArrayObject *)PyObject_CallMethod(
fClassifier, 
const_cast<char *
>(
"predict_proba"), 
const_cast<char *
>(
"(O)"), pEvent);
 
  300   double *proba = (
double *)(PyArray_DATA(
result));
 
  304   for (
int i = 0; i < nEvents; ++i) {
 
  313            << 
"Elapsed time for evaluation of " << nEvents <<  
" events: " 
  334   PyArrayObject *pEvent= (PyArrayObject *)PyArray_SimpleNew(2, dims, NPY_FLOAT);
 
  335   float *pValue = (
float *)(PyArray_DATA(pEvent));
 
  336   for (
UInt_t i = 0; i < 
fNvars; i++) pValue[i] = 
e->GetValue(i);
 
  339   PyArrayObject *
result = (PyArrayObject *)PyObject_CallMethod(
fClassifier, 
const_cast<char *
>(
"predict_proba"), 
const_cast<char *
>(
"(O)"), pEvent);
 
  340   double *proba = (
double *)(PyArray_DATA(
result));
 
  363   PyArrayObject *pEvent= (PyArrayObject *)PyArray_SimpleNew(2, dims, NPY_FLOAT);
 
  364   float *pValue = (
float *)(PyArray_DATA(pEvent));
 
  365   for (
UInt_t i = 0; i < 
fNvars; i++) pValue[i] = 
e->GetValue(i);
 
  368   PyArrayObject *
result = (PyArrayObject *)PyObject_CallMethod(
fClassifier, 
const_cast<char *
>(
"predict_proba"), 
const_cast<char *
>(
"(O)"), pEvent);
 
  369   double *proba = (
double *)(PyArray_DATA(
result));
 
  410   PyArrayObject* pRanking = (PyArrayObject*) PyObject_GetAttrString(
fClassifier, 
"feature_importances_");
 
  413   if(pRanking == 0) 
return NULL;
 
  432   Log() << 
"An AdaBoost classifier is a meta-estimator that begins by fitting" << 
Endl;
 
  433   Log() << 
"a classifier on the original dataset and then fits additional copies" << 
Endl;
 
  434   Log() << 
"of the classifier on the same dataset but where the weights of incorrectly" << 
Endl;
 
  435   Log() << 
"classified instances are adjusted such that subsequent classifiers focus" << 
Endl;
 
  436   Log() << 
"more on difficult cases." << 
Endl;
 
  438   Log() << 
"Check out the scikit-learn documentation for more information." << 
Endl;
 
#define REGISTER_METHOD(CLASS)
for example
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
 
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
 
OptionBase * DeclareOptionRef(T &ref, const TString &name, const TString &desc="")
 
Class that contains all the data information.
 
UInt_t GetNClasses() const
 
const Event * GetEvent() const
returns event without transformations
 
Types::ETreeType GetCurrentType() const
 
Long64_t GetNEvents(Types::ETreeType type=Types::kMaxTreeType) const
 
Long64_t GetNTrainingEvents() const
 
void SetCurrentEvent(Long64_t ievt) const
 
const Event * GetTrainingEvent(Long64_t ievt) const
 
Float_t GetValue(UInt_t ivar) const
return value of i'th variable
 
PyGILState_STATE m_GILState
 
virtual void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility they are hence without any...
 
const char * GetName() const
 
Bool_t IsModelPersistence() const
 
const TString & GetWeightFileDir() const
 
const TString & GetMethodName() const
 
DataSetInfo & DataInfo() const
 
virtual void TestClassification()
initialization
 
UInt_t GetNVariables() const
 
void NoErrorCalc(Double_t *const err, Double_t *const errUpper)
 
const TString & GetInputLabel(Int_t i) const
 
std::vector< Double_t > GetMvaValues(Long64_t firstEvt=0, Long64_t lastEvt=-1, Bool_t logProgress=false)
get all the MVA values for the events of the current Data type
 
PyObject * pBaseEstimator
 
std::vector< Double_t > mvaValues
 
TString fFilenameClassifier
 
void GetHelpMessage() const
 
Double_t GetMvaValue(Double_t *errLower=nullptr, Double_t *errUpper=nullptr)
 
const Ranking * CreateRanking()
 
std::vector< Float_t > classValues
 
MethodPyAdaBoost(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="")
 
Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
 
virtual void TestClassification()
initialization
 
virtual void ReadModelFromFile()
 
std::vector< Float_t > & GetMulticlassValues()
 
static int PyIsInitialized()
Check Python interpreter initialization status.
 
PyObject * Eval(TString code)
Evaluate Python code.
 
static void PyInitialize()
Initialize Python interpreter.
 
static void Serialize(TString file, PyObject *classifier)
Serialize Python object.
 
static Int_t UnSerialize(TString file, PyObject **obj)
Unserialize Python object.
 
void PyRunString(TString code, TString errorMessage="Failed to run python code", int start=256)
Execute Python code from string.
 
Ranking for variables in method (implementation)
 
virtual void AddRank(const Rank &rank)
Add a new rank take ownership of it.
 
Timing information for training and evaluation of MVA methods.
 
TString GetElapsedTime(Bool_t Scientific=kTRUE)
returns pretty string with elapsed time
 
Singleton class for Global types used by TMVA.
 
@ kSignal
Never change this number - it is elsewhere assumed to be zero !
 
const char * Data() const
 
create variable transformations
 
MsgLogger & Endl(MsgLogger &ml)