34#ifndef ROOT_TMVA_MethodFisher
35#define ROOT_TMVA_MethodFisher
61 const TString& theOption =
"Fisher");
#define ClassDef(name, id)
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
1-D histogram with a double per channel (see TH1 documentation)}
Class that contains all the data information.
Virtual base Class for all MVA method.
virtual void ReadWeightsFromStream(std::istream &)=0
Fisher and Mahalanobis Discriminants (Linear Discriminant Analysis)
void ReadWeightsFromStream(std::istream &i)
read Fisher coefficients from weight file
void GetCov_Full(void)
compute full covariance matrix from sum of within and between matrices
Double_t fSumOfWeightsS
sum-of-weights for signal training events
void GetHelpMessage() const
get help message text
TMatrixD * fBetw
between-class matrix
const Ranking * CreateRanking()
computes ranking of input variables
TMatrixD * fCov
full covariance matrix
virtual ~MethodFisher(void)
destructor
Double_t GetMvaValue(Double_t *err=nullptr, Double_t *errUpper=nullptr)
returns the Fisher value (no fixed range)
void Train(void)
computation of Fisher coefficients by series of matrix operations
void GetDiscrimPower(void)
computation of discrimination power indicator for each variable small values of "fWith" indicates lit...
TMatrixD * fWith
within-class matrix
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
Fisher can only handle classification with 2 classes.
EFisherMethod GetFisherMethod(void)
void PrintCoefficients(void)
display Fisher coefficients and discriminating power for each variable check maximum length of variab...
void GetCov_BetweenClass(void)
the matrix of covariance 'between class' reflects the dispersion of the events of a class relative to...
void MakeClassSpecific(std::ostream &, const TString &) const
write Fisher-specific classifier response
EFisherMethod fFisherMethod
Fisher or Mahalanobis.
std::vector< Double_t > * fFisherCoeff
Fisher coefficients.
std::vector< Double_t > * fDiscrimPow
discriminating power
void ReadWeightsFromXML(void *wghtnode)
read Fisher coefficients from xml weight file
void ProcessOptions()
process user options
void GetFisherCoeff(void)
Fisher = Sum { [coeff]*[variables] }.
void GetMean(void)
compute mean values of variables in each sample, and the overall means
void AddWeightsXMLTo(void *parent) const
create XML description of Fisher classifier
void DeclareOptions()
MethodFisher options: format and syntax of option string: "type" where type is "Fisher" or "Mahalanob...
void InitMatrices(void)
initialization method; creates global matrices and vectors
void GetCov_WithinClass(void)
the matrix of covariance 'within class' reflects the dispersion of the events relative to the center ...
void Init(void)
default initialization called by all constructors
TString fTheMethod
Fisher or Mahalanobis.
Double_t fSumOfWeightsB
sum-of-weights for background training events
Ranking for variables in method (implementation)
create variable transformations