Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
rf705_linearmorph.C File Reference

Detailed Description

View in nbviewer Open in SWAN Special pdf's: linear interpolation between pdf shapes using the 'Alex Read' algorithm

␛[1mRooFit v3.60 -- Developed by Wouter Verkerke and David Kirkby␛[0m
Copyright (C) 2000-2013 NIKHEF, University of California & Stanford University
All rights reserved, please read http://roofit.sourceforge.net/license.txt
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(lmorph) creating new cache 0x5644bdf699c0 with pdf g1_MORPH_g2_CACHE_Obs[x]_NORM_x for nset (x) with code 0
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(lmorph) creating new cache 0x5644bdf699c0 with pdf g1_MORPH_g2_CACHE_Obs[x]_NORM_x for nset (x) with code 0
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(lmorph) creating new cache 0x5644bdf699c0 with pdf g1_MORPH_g2_CACHE_Obs[x]_NORM_x for nset (x) with code 0
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(lmorph) creating new cache 0x5644bdf699c0 with pdf g1_MORPH_g2_CACHE_Obs[x]_NORM_x for nset (x) with code 0
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(lmorph) creating new cache 0x5644bdf699c0 with pdf g1_MORPH_g2_CACHE_Obs[x]_NORM_x for nset (x) with code 0
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(lmorph) creating new cache 0x5644bdf699c0 with pdf g1_MORPH_g2_CACHE_Obs[x]_NORM_x for nset (x) with code 0
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(lmorph) creating new cache 0x5644bdf699c0 with pdf g1_MORPH_g2_CACHE_Obs[x]_NORM_x for nset (x) with code 0
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(lmorph) creating new cache 0x5644bdf699c0 with pdf g1_MORPH_g2_CACHE_Obs[x]_NORM_x for nset (x) with code 0
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(lmorph) creating new cache 0x5644bdf699c0 with pdf g1_MORPH_g2_CACHE_Obs[x]_NORM_x_alpha for nset (x,alpha) with code 0 from preexisting content.
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(lmorph) creating new cache 0x5644bdf699c0 with pdf g1_MORPH_g2_CACHE_Obs[x]_NORM_x for nset (x) with code 0
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(lmorph) creating new cache 0x5644bc36c6f0 with pdf g1_MORPH_g2_CACHE_Obs[x]_NORM_x for nset (x) with code 0 from preexisting content.
[#0] PROGRESS:Eval -- RooIntegralMorph::fillCacheObject(lmorph) filling multi-dimensional cache..................................................
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(lmorph) creating new cache 0x5644bc36c6f0 with pdf g1_MORPH_g2_CACHE_Obs[alpha,x]_NORM_x for nset (x) with code 0
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:Minimization -- The following expressions have been identified as constant and will be precalculated and cached: (g1,g2)
[#0] WARNING:Minimization -- RooAbsMinimizerFcn::synchronize: WARNING: no initial error estimate available for alpha: using 0.1
**********
** 1 **SET PRINT 1
**********
**********
** 2 **SET NOGRAD
**********
PARAMETER DEFINITIONS:
NO. NAME VALUE STEP SIZE LIMITS
1 alpha 8.00000e-01 1.00000e-01 0.00000e+00 1.00000e+00
**********
** 3 **SET ERR 0.5
**********
**********
** 4 **SET PRINT 1
**********
**********
** 5 **SET STR 1
**********
NOW USING STRATEGY 1: TRY TO BALANCE SPEED AGAINST RELIABILITY
**********
** 6 **MIGRAD 500 1
**********
FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4.
prevFCN = 2639.749221 START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03
alpha=0.8026,
prevFCN = 2639.409749 alpha=0.7974,
prevFCN = 2640.17258 alpha=0.8003,
prevFCN = 2639.703144 alpha=0.7997,
prevFCN = 2639.796557 FCN=2639.75 FROM MIGRAD STATUS=INITIATE 4 CALLS 5 TOTAL
EDM= unknown STRATEGY= 1 NO ERROR MATRIX
EXT PARAMETER CURRENT GUESS STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 alpha 8.00000e-01 1.00000e-01 2.57889e-01 -5.89245e+01
ERR DEF= 0.5
alpha=0.8116,
prevFCN = 2638.919064 alpha=0.8119,
prevFCN = 2638.930985 alpha=0.8113,
prevFCN = 2638.908768 alpha=0.8094,
prevFCN = 2638.901287 alpha=0.8102,
prevFCN = 2638.885143 alpha=0.8103,
prevFCN = 2638.886672 alpha=0.8101,
prevFCN = 2638.883909 alpha=0.8095,
prevFCN = 2638.898442 alpha=0.8098,
prevFCN = 2638.889204 alpha=0.8099,
prevFCN = 2638.884962 alpha=0.8104,
prevFCN = 2638.887231 alpha=0.8098,
prevFCN = 2638.888592 alpha=0.8102,
prevFCN = 2638.885076 alpha=0.81,
prevFCN = 2638.883889 alpha=0.8098,
prevFCN = 2638.888745 alpha=0.81,
prevFCN = 2638.883589 alpha=0.81,
prevFCN = 2638.883345 alpha=0.8095,
prevFCN = 2638.898453 alpha=0.8098,
prevFCN = 2638.89011 alpha=0.8099,
prevFCN = 2638.886243 alpha=0.81,
prevFCN = 2638.884385 alpha=0.81,
prevFCN = 2638.883475 alpha=0.8101,
prevFCN = 2638.884457 alpha=0.8099,
prevFCN = 2638.885715 alpha=0.8101,
prevFCN = 2638.883988 alpha=0.81,
prevFCN = 2638.884446 alpha=0.81,
prevFCN = 2638.883552 alpha=0.81,
prevFCN = 2638.883372 alpha=0.81,
prevFCN = 2638.883349 alpha=0.81,
prevFCN = 2638.883345 MIGRAD FAILS TO FIND IMPROVEMENT
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
alpha=0.81,
prevFCN = 2638.883345 alpha=0.8101,
prevFCN = 2638.883988 alpha=0.81,
prevFCN = 2638.884446 alpha=0.81,
prevFCN = 2638.883467 alpha=0.81,
prevFCN = 2638.883226 alpha=0.81,
prevFCN = 2638.883369 alpha=0.81,
prevFCN = 2638.883321 COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=2638.88 FROM MIGRAD STATUS=CONVERGED 41 CALLS 42 TOTAL
EDM=0.000209046 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 alpha 8.10021e-01 1.63457e-03 1.74006e-04 3.46989e+00
ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 1 ERR DEF=0.5
2.672e-06
alpha=0.81, **********
** 7 **SET ERR 0.5
**********
**********
** 8 **SET PRINT 1
**********
**********
** 9 **HESSE 500
**********
prevFCN = 2638.883345 alpha=0.81,
prevFCN = 2638.883369 alpha=0.81,
prevFCN = 2638.883321 alpha=0.8103,
prevFCN = 2638.886457 alpha=0.8097,
prevFCN = 2638.89054 alpha=0.8131,
prevFCN = 2638.992315 alpha=0.8069,
prevFCN = 2639.023618 alpha=0.8171,
prevFCN = 2639.367946 alpha=0.8029,
prevFCN = 2639.374671 alpha=0.8102,
prevFCN = 2638.885206 alpha=0.8098,
prevFCN = 2638.887615 alpha=0.8101,
prevFCN = 2638.883674 alpha=0.81,
prevFCN = 2638.883555 COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=2638.88 FROM HESSE STATUS=OK 13 CALLS 55 TOTAL
EDM=0.00230644 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER INTERNAL INTERNAL
NO. NAME VALUE ERROR STEP SIZE VALUE
1 alpha 8.10021e-01 7.16762e-03 1.80513e-02 6.68797e-01
ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 1 ERR DEF=0.5
5.138e-05
alpha=0.81, [#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(lmorph) creating new cache 0x5644bc36c6f0 with pdf g1_MORPH_g2_CACHE_Obs[alpha,x]_NORM_x for nset (x) with code 0 from preexisting content.
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(lmorph) creating new cache 0x5644bc36c6f0 with pdf g1_MORPH_g2_CACHE_Obs[alpha,x]_NORM_x for nset (x) with code 0 from preexisting content.
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(lmorph) creating new cache 0x5644be9b9a30 with pdf g1_MORPH_g2_CACHE_Obs[alpha,x]_NORM_x for nset (x) with code 0 from preexisting content.
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(lmorph) creating new cache 0x5644be9b9a30 with pdf g1_MORPH_g2_CACHE_Obs[alpha,x]_NORM_x for nset (x) with code 0 from preexisting content.
#include "RooRealVar.h"
#include "RooDataSet.h"
#include "RooGaussian.h"
#include "RooPolynomial.h"
#include "RooNLLVar.h"
#include "TCanvas.h"
#include "TAxis.h"
#include "RooPlot.h"
#include "TH1.h"
using namespace RooFit;
{
// C r e a t e e n d p o i n t p d f s h a p e s
// ------------------------------------------------------
// Observable
RooRealVar x("x", "x", -20, 20);
// Lower end point shape: a Gaussian
RooRealVar g1mean("g1mean", "g1mean", -10);
RooGaussian g1("g1", "g1", x, g1mean, RooConst(2));
// Upper end point shape: a Polynomial
RooPolynomial g2("g2", "g2", x, RooArgSet(-0.03, -0.001));
// C r e a t e i n t e r p o l a t i n g p d f
// -----------------------------------------------
// Create interpolation variable
RooRealVar alpha("alpha", "alpha", 0, 1.0);
// Specify sampling density on observable and interpolation variable
x.setBins(1000, "cache");
alpha.setBins(50, "cache");
// Construct interpolating pdf in (x,a) represent g1(x) at a=a_min
// and g2(x) at a=a_max
RooIntegralMorph lmorph("lmorph", "lmorph", g1, g2, x, alpha);
// P l o t i n t e r p o l a t i n g p d f a t v a r i o u s a l p h a
// -----------------------------------------------------------------------------
// Show end points as blue curves
RooPlot *frame1 = x.frame();
g1.plotOn(frame1);
g2.plotOn(frame1);
// Show interpolated shapes in red
alpha.setVal(0.125);
lmorph.plotOn(frame1, LineColor(kRed));
alpha.setVal(0.25);
lmorph.plotOn(frame1, LineColor(kRed));
alpha.setVal(0.375);
lmorph.plotOn(frame1, LineColor(kRed));
alpha.setVal(0.50);
lmorph.plotOn(frame1, LineColor(kRed));
alpha.setVal(0.625);
lmorph.plotOn(frame1, LineColor(kRed));
alpha.setVal(0.75);
lmorph.plotOn(frame1, LineColor(kRed));
alpha.setVal(0.875);
lmorph.plotOn(frame1, LineColor(kRed));
alpha.setVal(0.95);
lmorph.plotOn(frame1, LineColor(kRed));
// S h o w 2 D d i s t r i b u t i o n o f p d f ( x , a l p h a )
// -----------------------------------------------------------------------
// Create 2D histogram
TH1 *hh = lmorph.createHistogram("hh", x, Binning(40), YVar(alpha, Binning(40)));
// F i t p d f t o d a t a s e t w i t h a l p h a = 0 . 8
// -----------------------------------------------------------------
// Generate a toy dataset at alpha = 0.8
alpha = 0.8;
RooDataSet *data = lmorph.generate(x, 1000);
// Fit pdf to toy data
lmorph.setCacheAlpha(kTRUE);
lmorph.fitTo(*data, Verbose(kTRUE));
// Plot fitted pdf and data overlaid
RooPlot *frame2 = x.frame(Bins(100));
data->plotOn(frame2);
lmorph.plotOn(frame2);
// S c a n - l o g ( L ) v s a l p h a
// -----------------------------------------
// Show scan -log(L) of dataset w.r.t alpha
RooPlot *frame3 = alpha.frame(Bins(100), Range(0.1, 0.9));
// Make 2D pdf of histogram
RooNLLVar nll("nll", "nll", lmorph, *data);
nll.plotOn(frame3, ShiftToZero());
lmorph.setCacheAlpha(kFALSE);
TCanvas *c = new TCanvas("rf705_linearmorph", "rf705_linearmorph", 800, 800);
c->Divide(2, 2);
c->cd(1);
gPad->SetLeftMargin(0.15);
frame1->GetYaxis()->SetTitleOffset(1.6);
frame1->Draw();
c->cd(2);
gPad->SetLeftMargin(0.20);
hh->GetZaxis()->SetTitleOffset(2.5);
hh->Draw("surf");
c->cd(3);
gPad->SetLeftMargin(0.15);
frame3->GetYaxis()->SetTitleOffset(1.4);
frame3->Draw();
c->cd(4);
gPad->SetLeftMargin(0.15);
frame2->GetYaxis()->SetTitleOffset(1.4);
frame2->Draw();
return;
}
#define c(i)
Definition RSha256.hxx:101
const Bool_t kFALSE
Definition RtypesCore.h:101
const Bool_t kTRUE
Definition RtypesCore.h:100
@ kRed
Definition Rtypes.h:66
@ kBlue
Definition Rtypes.h:66
#define gPad
virtual RooPlot * plotOn(RooPlot *frame, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) const
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition RooArgSet.h:35
RooDataSet is a container class to hold unbinned data.
Definition RooDataSet.h:36
Plain Gaussian p.d.f.
Definition RooGaussian.h:24
Class RooIntegralMorph is an implementation of the histogram interpolation technique described by Ale...
Class RooNLLVar implements a -log(likelihood) calculation from a dataset and a PDF.
Definition RooNLLVar.h:30
A RooPlot is a plot frame and a container for graphics objects within that frame.
Definition RooPlot.h:44
TAxis * GetYaxis() const
Definition RooPlot.cxx:1278
static RooPlot * frame(const RooAbsRealLValue &var, Double_t xmin, Double_t xmax, Int_t nBins)
Create a new frame for a given variable in x.
Definition RooPlot.cxx:249
virtual void Draw(Option_t *options=0)
Draw this plot and all of the elements it contains.
Definition RooPlot.cxx:661
RooPolynomial implements a polynomial p.d.f of the form.
RooRealVar represents a variable that can be changed from the outside.
Definition RooRealVar.h:39
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title.
Definition TAttAxis.cxx:302
virtual void SetLineColor(Color_t lcolor)
Set the line color.
Definition TAttLine.h:40
The Canvas class.
Definition TCanvas.h:23
TH1 is the base class of all histogram classes in ROOT.
Definition TH1.h:58
TAxis * GetZaxis()
Definition TH1.h:322
virtual void Draw(Option_t *option="")
Draw this histogram with options.
Definition TH1.cxx:3074
Double_t x[n]
Definition legend1.C:17
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
Definition Common.h:18
Ta Range(0, 0, 1, 1)
Date
July 2008
Author
Wouter Verkerke

Definition in file rf705_linearmorph.C.