␛[1mRooFit v3.60 -- Developed by Wouter Verkerke and David Kirkby␛[0m
Copyright (C) 2000-2013 NIKHEF, University of California & Stanford University
All rights reserved, please read http://roofit.sourceforge.net/license.txt
[#0] WARNING:InputArguments -- The parameter 'sigma_g1' with range [-1e+30, 1e+30] of the RooGaussian 'g1' exceeds the safe range of (0, inf). Advise to limit its range.
**********
** 1 **SET PRINT 1
**********
**********
** 2 **SET NOGRAD
**********
PARAMETER DEFINITIONS:
NO. NAME VALUE STEP SIZE LIMITS
1 frac 5.00000e-01 1.00000e-01 0.00000e+00 1.00000e+00
2 mean 0.00000e+00 2.00000e+00 -1.00000e+01 1.00000e+01
3 sigma_g2 4.00000e+00 3.00000e-01 3.00000e+00 6.00000e+00
**********
** 3 **SET ERR 0.5
**********
**********
** 4 **SET PRINT 1
**********
**********
** 5 **SET STR 1
**********
NOW USING STRATEGY 1: TRY TO BALANCE SPEED AGAINST RELIABILITY
**********
** 6 **MIGRAD 1500 1
**********
FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4.
[#1] INFO:Eval -- RooAbsTestStatistic::initMPMode: started 2 remote server process.
START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03
FCN=2660.22 FROM MIGRAD STATUS=INITIATE 10 CALLS 11 TOTAL
EDM= unknown STRATEGY= 1 NO ERROR MATRIX
EXT PARAMETER CURRENT GUESS STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 frac 5.00000e-01 1.00000e-01 2.01358e-01 -5.61980e+00
2 mean 0.00000e+00 2.00000e+00 2.01358e-01 -7.16779e+00
3 sigma_g2 4.00000e+00 3.00000e-01 2.14402e-01 7.28535e+00
ERR DEF= 0.5
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=2659.74 FROM MIGRAD STATUS=CONVERGED 67 CALLS 68 TOTAL
EDM=5.19798e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 frac 6.23972e-01 1.64510e-01 5.33134e-03 6.83204e-03
2 mean 4.57491e-03 1.09369e-01 3.87767e-04 -1.84350e-01
3 sigma_g2 4.11576e+00 4.07375e-01 4.33560e-03 -6.97269e-03
ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5
2.817e-02 -1.610e-03 6.258e-02
-1.610e-03 1.196e-02 -4.302e-03
6.258e-02 -4.302e-03 1.705e-01
PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL 1 2 3
1 0.90293 1.000 -0.088 0.903
2 0.09533 -0.088 1.000 -0.095
3 0.90308 0.903 -0.095 1.000
[#1] INFO:Eval -- RooAbsTestStatistic::initMPMode: started 2 remote server process.
[#1] INFO:Eval -- RooAbsTestStatistic::initMPMode: started 2 remote server process.
[#1] INFO:Minimization -- RooProfileLL::evaluate(nll_model_modelData_Profile[frac]) Creating instance of MINUIT
[#1] INFO:Minimization -- RooProfileLL::evaluate(nll_model_modelData_Profile[frac]) determining minimum likelihood for current configurations w.r.t all observable
[#1] INFO:Eval -- RooAbsTestStatistic::initMPMode: started 2 remote server process.
[#1] INFO:Minimization -- RooProfileLL::evaluate(nll_model_modelData_Profile[frac]) minimum found at (frac=0.623915)
..................................................................................
[#1] INFO:Minimization -- RooProfileLL::evaluate(nll_model_modelData_Profile[sigma_g2]) Creating instance of MINUIT
[#1] INFO:Minimization -- RooProfileLL::evaluate(nll_model_modelData_Profile[sigma_g2]) determining minimum likelihood for current configurations w.r.t all observable
[#1] INFO:Eval -- RooAbsTestStatistic::initMPMode: started 2 remote server process.
[#1] INFO:Minimization -- RooProfileLL::evaluate(nll_model_modelData_Profile[sigma_g2]) minimum found at (sigma_g2=4.11588)
....................................................................................
{
RooRealVar mean(
"mean",
"mean of g1 and g2", 0, -10, 10);
RooRealVar sigma_g1(
"sigma_g1",
"width of g1", 3);
RooRealVar sigma_g2(
"sigma_g2",
"width of g2", 4, 3.0, 6.0);
RooAbsReal *nll = model.createNLL(*data, NumCPU(2));
RooPlot *frame1 = frac.
frame(Bins(10),
Range(0.01, 0.95), Title(
"LL and profileLL in frac"));
nll->
plotOn(frame1, ShiftToZero());
RooPlot *frame2 = sigma_g2.
frame(Bins(10),
Range(3.3, 5.0), Title(
"LL and profileLL in sigma_g2"));
nll->
plotOn(frame2, ShiftToZero());
gPad->SetLeftMargin(0.15);
gPad->SetLeftMargin(0.15);
delete pll_frac;
delete pll_sigmag2;
delete nll;
}
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
virtual RooAbsReal * createProfile(const RooArgSet ¶msOfInterest)
Create a RooProfileLL object that eliminates all nuisance parameters in the present function.
virtual RooPlot * plotOn(RooPlot *frame, const RooCmdArg &arg1=RooCmdArg(), const RooCmdArg &arg2=RooCmdArg(), const RooCmdArg &arg3=RooCmdArg(), const RooCmdArg &arg4=RooCmdArg(), const RooCmdArg &arg5=RooCmdArg(), const RooCmdArg &arg6=RooCmdArg(), const RooCmdArg &arg7=RooCmdArg(), const RooCmdArg &arg8=RooCmdArg(), const RooCmdArg &arg9=RooCmdArg(), const RooCmdArg &arg10=RooCmdArg()) const
Plot (project) PDF on specified frame.
RooAddPdf is an efficient implementation of a sum of PDFs of the form.
RooArgList is a container object that can hold multiple RooAbsArg objects.
RooDataSet is a container class to hold unbinned data.
RooMinimizer is a wrapper class around ROOT::Fit:Fitter that provides a seamless interface between th...
Int_t migrad()
Execute MIGRAD.
A RooPlot is a plot frame and a container for graphics objects within that frame.
virtual void SetMinimum(Double_t minimum=-1111)
Set minimum value of Y axis.
static RooPlot * frame(const RooAbsRealLValue &var, Double_t xmin, Double_t xmax, Int_t nBins)
Create a new frame for a given variable in x.
virtual void SetMaximum(Double_t maximum=-1111)
Set maximum value of Y axis.
virtual void Draw(Option_t *options=0)
Draw this plot and all of the elements it contains.
RooRealVar represents a variable that can be changed from the outside.
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title.
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...