from __future__ import print_function
import ROOT
x = ROOT.RooRealVar("x", "x", 0, 10)
mean = ROOT.RooRealVar("mean", "mean of gaussians", 5)
sigma1 = ROOT.RooRealVar("sigma1", "width of gaussians", 0.5)
sigma2 = ROOT.RooRealVar("sigma2", "width of gaussians", 1)
sig1 = ROOT.RooGaussian("sig1", "Signal component 1", x, mean, sigma1)
sig2 = ROOT.RooGaussian("sig2", "Signal component 2", x, mean, sigma2)
a0 = ROOT.RooRealVar("a0", "a0", 0.5, 0.0, 1.0)
a1 = ROOT.RooRealVar("a1", "a1", 0.2, 0.0, 1.0)
bkg = ROOT.RooChebychev("bkg", "Background", x, [a0, a1])
sig1frac = ROOT.RooRealVar("sig1frac", "fraction of component 1 in signal", 0.8, 0.0, 1.0)
sig = ROOT.RooAddPdf("sig", "Signal", [sig1, sig2], [sig1frac])
bkgfrac = ROOT.RooRealVar("bkgfrac", "fraction of background", 0.5, 0.0, 1.0)
model = ROOT.RooAddPdf("model", "g1+g2+a", [bkg, sig], [bkgfrac])
d = model.generate({x}, 10000)
dh = d.binnedClone()
ll = ROOT.RooLinkedList()
model.chi2FitTo(dh, ll)
dsmall = d.reduce(ROOT.RooFit.EventRange(1, 100))
dhsmall = dsmall.binnedClone()
chi2_lowstat = ROOT.RooChi2Var("chi2_lowstat", "chi2", model, dhsmall)
print(chi2_lowstat.getVal())