18x = ROOT.RooRealVar(
"x",
"x", 0, 10)
22mean = ROOT.RooRealVar(
"mean",
"mean of gaussians", 5)
23sigma1 = ROOT.RooRealVar(
"sigma1",
"width of gaussians", 0.5)
24sigma2 = ROOT.RooRealVar(
"sigma2",
"width of gaussians", 1)
26sig1 = ROOT.RooGaussian(
"sig1",
"Signal component 1", x, mean, sigma1)
27sig2 = ROOT.RooGaussian(
"sig2",
"Signal component 2", x, mean, sigma2)
30a0 = ROOT.RooRealVar(
"a0",
"a0", 0.5, 0.0, 1.0)
31a1 = ROOT.RooRealVar(
"a1",
"a1", -0.2, 0.0, 1.0)
32bkg = ROOT.RooChebychev(
"bkg",
"Background", x, [a0, a1])
35sig1frac = ROOT.RooRealVar(
"sig1frac",
"fraction of component 1 in signal", 0.8, 0.0, 1.0)
36sig = ROOT.RooAddPdf(
"sig",
"Signal", [sig1, sig2], [sig1frac])
42x.setRange(
"signalRange", 4, 6)
46nsig = ROOT.RooRealVar(
"nsig",
"number of signal events in signalRange", 500, 0.0, 10000)
47nbkg = ROOT.RooRealVar(
"nbkg",
"number of background events in signalRange", 500, 0, 10000)
48esig = ROOT.RooExtendPdf(
"esig",
"extended signal pdf", sig, nsig,
"signalRange")
49ebkg = ROOT.RooExtendPdf(
"ebkg",
"extended background pdf", bkg, nbkg,
"signalRange")
55model = ROOT.RooAddPdf(
"model",
"(g1+g2)+a", [ebkg, esig])
62data = model.generate({x}, 1000)
65r = model.fitTo(data, Extended=
True, Save=
True)