17x = ROOT.RooRealVar(
"x",
"x", 0, 10)
21mean = ROOT.RooRealVar(
"mean",
"mean of gaussians", 5)
22sigma1 = ROOT.RooRealVar(
"sigma1",
"width of gaussians", 0.5)
23sigma2 = ROOT.RooRealVar(
"sigma2",
"width of gaussians", 1)
25sig1 = ROOT.RooGaussian(
"sig1",
"Signal component 1", x, mean, sigma1)
26sig2 = ROOT.RooGaussian(
"sig2",
"Signal component 2", x, mean, sigma2)
29a0 = ROOT.RooRealVar(
"a0",
"a0", 0.5, 0., 1.)
30a1 = ROOT.RooRealVar(
"a1",
"a1", -0.2, 0., 1.)
31bkg = ROOT.RooChebychev(
"bkg",
"Background", x, ROOT.RooArgList(a0, a1))
34sig1frac = ROOT.RooRealVar(
35 "sig1frac",
"fraction of component 1 in signal", 0.8, 0., 1.)
37 "sig",
"Signal", ROOT.RooArgList(sig1, sig2), ROOT.RooArgList(sig1frac))
43x.setRange(
"signalRange", 4, 6)
47nsig = ROOT.RooRealVar(
48 "nsig",
"number of signal events in signalRange", 500, 0., 10000)
49nbkg = ROOT.RooRealVar(
50 "nbkg",
"number of background events in signalRange", 500, 0, 10000)
51esig = ROOT.RooExtendPdf(
52 "esig",
"extended signal p.d.f", sig, nsig,
"signalRange")
53ebkg = ROOT.RooExtendPdf(
54 "ebkg",
"extended background p.d.f", bkg, nbkg,
"signalRange")
60model = ROOT.RooAddPdf(
"model",
"(g1+g2)+a", ROOT.RooArgList(ebkg, esig))
67data = model.generate(ROOT.RooArgSet(x), 1000)
70r = model.fitTo(data, ROOT.RooFit.Extended(ROOT.kTRUE), ROOT.RooFit.Save())