These functions apply to SVector types (and also to Vector expressions) and can return a vector expression or a scalar, like in the Dot product, or a matrix, like in the Tensor product.
Functions | |
template<class T > | |
SVector< T, 3 > | ROOT::Math::Cross (const SVector< T, 3 > &lhs, const SVector< T, 3 > &rhs) |
Vector Cross Product (only for 3-dim vectors) \( \vec{c} = \vec{a}\times\vec{b} \). | |
template<class T , unsigned int D> | |
T | ROOT::Math::Dot (const SVector< T, D > &lhs, const SVector< T, D > &rhs) |
Vector dot product. | |
template<class T , unsigned int D> | |
VecExpr< UnaryOp< Fabs< T >, SVector< T, D >, T >, T, D > | ROOT::Math::fabs (const SVector< T, D > &rhs) |
abs of a vector : v2(i) = | v1(i) | returning a vector expression | |
template<class T > | |
T | ROOT::Math::Lmag (const SVector< T, 4 > &rhs) |
Lmag: Minkowski Lorentz-Vector norm (only for 4-dim vectors) Length of a vector Lorentz-Vector: \( |\vec{v}| = \sqrt{v_0^2 - v_1^2 - v_2^2 -v_3^2} \). | |
template<class T > | |
T | ROOT::Math::Lmag2 (const SVector< T, 4 > &rhs) |
Lmag2: Square of Minkowski Lorentz-Vector norm (only for 4D Vectors) Template to compute \( |\vec{v}|^2 = v_0^2 - v_1^2 - v_2^2 -v_3^2 \). | |
template<class T , unsigned int D> | |
T | ROOT::Math::Mag (const SVector< T, D > &rhs) |
Vector magnitude (Euclidian norm) Compute : \( |\vec{v}| = \sqrt{\sum_iv_i^2} \). | |
template<class T , unsigned int D> | |
T | ROOT::Math::Mag2 (const SVector< T, D > &rhs) |
Vector magnitude square Template to compute \(|\vec{v}|^2 = \sum_iv_i^2 \). | |
template<class T , unsigned int D> | |
VecExpr< BinaryOp< MulOp< T >, SVector< T, D >, SVector< T, D >, T >, T, D > | ROOT::Math::operator* (const SVector< T, D > &lhs, const SVector< T, D > &rhs) |
Element by element vector product v3(i) = v1(i)*v2(i) returning a vector expression. | |
template<class A , class T , unsigned int D> | |
VecExpr< BinaryOpCopyL< AddOp< T >, Constant< A >, SVector< T, D >, T >, T, D > | ROOT::Math::operator+ (const A &lhs, const SVector< T, D > &rhs) |
Addition of a scalar to each vector element v2(i) = a + v1(i) returning a vector expression. | |
template<class A , class T , unsigned int D> | |
VecExpr< BinaryOpCopyR< AddOp< T >, SVector< T, D >, Constant< A >, T >, T, D > | ROOT::Math::operator+ (const SVector< T, D > &lhs, const A &rhs) |
Addition of a scalar to a each vector element: v2(i) = v1(i) + a returning a vector expression. | |
template<class T , unsigned int D> | |
VecExpr< BinaryOp< AddOp< T >, SVector< T, D >, SVector< T, D >, T >, T, D > | ROOT::Math::operator+ (const SVector< T, D > &lhs, const SVector< T, D > &rhs) |
Addition of two vectors v3 = v1+v2 returning a vector expression. | |
template<class A , class T , unsigned int D> | |
VecExpr< BinaryOpCopyL< MinOp< T >, Constant< A >, SVector< T, D >, T >, T, D > | ROOT::Math::operator- (const A &lhs, const SVector< T, D > &rhs) |
Subtraction scalar vector (for each vector element) v2(i) = a - v1(i) returning a vector expression. | |
template<class A , class T , unsigned int D> | |
VecExpr< BinaryOpCopyR< MinOp< T >, SVector< T, D >, Constant< A >, T >, T, D > | ROOT::Math::operator- (const SVector< T, D > &lhs, const A &rhs) |
Subtraction of a scalar from each vector element: v2(i) = v1(i) - a returning a vector expression. | |
template<class T , unsigned int D> | |
VecExpr< BinaryOp< MinOp< T >, SVector< T, D >, SVector< T, D >, T >, T, D > | ROOT::Math::operator- (const SVector< T, D > &lhs, const SVector< T, D > &rhs) |
Vector Subtraction: v3 = v1 - v2 returning a vector expression. | |
template<class T , unsigned int D> | |
VecExpr< UnaryOp< Minus< T >, SVector< T, D >, T >, T, D > | ROOT::Math::operator- (const SVector< T, D > &rhs) |
Unary - operator v2 = -v1 . | |
template<class A , class T , unsigned int D> | |
VecExpr< BinaryOpCopyL< DivOp< T >, Constant< A >, SVector< T, D >, T >, T, D > | ROOT::Math::operator/ (const A &lhs, const SVector< T, D > &rhs) |
Division of a scalar value by the vector element: v2(i) = a/v1(i) returning a vector expression. | |
template<class A , class T , unsigned int D> | |
VecExpr< BinaryOpCopyR< DivOp< T >, SVector< T, D >, Constant< A >, T >, T, D > | ROOT::Math::operator/ (const SVector< T, D > &lhs, const A &rhs) |
Division of the vector element by a scalar value: v2(i) = v1(i)/a returning a vector expression. | |
template<class T , unsigned int D> | |
VecExpr< BinaryOp< DivOp< T >, SVector< T, D >, SVector< T, D >, T >, T, D > | ROOT::Math::operator/ (const SVector< T, D > &lhs, const SVector< T, D > &rhs) |
Element by element division of vectors of the same dimension: v3(i) = v1(i)/v2(i) returning a vector expression. | |
template<class T , unsigned int D> | |
VecExpr< UnaryOp< Sqr< T >, SVector< T, D >, T >, T, D > | ROOT::Math::sqr (const SVector< T, D > &rhs) |
square of a vector v2(i) = v1(i)*v1(i) . | |
template<class T , unsigned int D> | |
VecExpr< UnaryOp< Sqrt< T >, SVector< T, D >, T >, T, D > | ROOT::Math::sqrt (const SVector< T, D > &rhs) |
square root of a vector (element by element) v2(i) = sqrt( v1(i) ) returning a vector expression | |
template<class T , unsigned int D1, unsigned int D2> | |
Expr< TensorMulOp< SVector< T, D1 >, SVector< T, D2 > >, T, D1, D2 > | ROOT::Math::TensorProd (const SVector< T, D1 > &lhs, const SVector< T, D2 > &rhs) |
Tensor Vector Product : M(i,j) = v(i) * v(j) returning a matrix expression. | |
template<class T , unsigned int D> | |
SVector< T, D > | ROOT::Math::Unit (const SVector< T, D > &rhs) |
Unit. | |
|
inline |
Vector Cross Product (only for 3-dim vectors) \( \vec{c} = \vec{a}\times\vec{b} \).
Definition at line 323 of file Functions.h.
|
inline |
Vector dot product.
Template to compute \(\vec{a}\cdot\vec{b} = \sum_i a_i\cdot b_i \).
Definition at line 165 of file Functions.h.
|
inline |
abs of a vector : v2(i) = | v1(i) | returning a vector expression
Definition at line 149 of file UnaryOperators.h.
|
inline |
Lmag: Minkowski Lorentz-Vector norm (only for 4-dim vectors) Length of a vector Lorentz-Vector: \( |\vec{v}| = \sqrt{v_0^2 - v_1^2 - v_2^2 -v_3^2} \).
Definition at line 300 of file Functions.h.
|
inline |
Lmag2: Square of Minkowski Lorentz-Vector norm (only for 4D Vectors) Template to compute \( |\vec{v}|^2 = v_0^2 - v_1^2 - v_2^2 -v_3^2 \).
Definition at line 276 of file Functions.h.
Vector magnitude (Euclidian norm) Compute : \( |\vec{v}| = \sqrt{\sum_iv_i^2} \).
Definition at line 253 of file Functions.h.
Vector magnitude square Template to compute \(|\vec{v}|^2 = \sum_iv_i^2 \).
Definition at line 230 of file Functions.h.
|
inline |
Element by element vector product v3(i) = v1(i)*v2(i) returning a vector expression.
Note this is NOT the Dot, Cross or Tensor product.
Definition at line 548 of file BinaryOperators.h.
|
inline |
Addition of a scalar to each vector element v2(i) = a + v1(i) returning a vector expression.
Definition at line 133 of file BinaryOperators.h.
|
inline |
Addition of a scalar to a each vector element: v2(i) = v1(i) + a returning a vector expression.
Definition at line 116 of file BinaryOperators.h.
|
inline |
Addition of two vectors v3 = v1+v2 returning a vector expression.
Definition at line 62 of file BinaryOperators.h.
|
inline |
Subtraction scalar vector (for each vector element) v2(i) = a - v1(i) returning a vector expression.
Definition at line 377 of file BinaryOperators.h.
|
inline |
Subtraction of a scalar from each vector element: v2(i) = v1(i) - a returning a vector expression.
Definition at line 360 of file BinaryOperators.h.
|
inline |
Vector Subtraction: v3 = v1 - v2 returning a vector expression.
Definition at line 306 of file BinaryOperators.h.
|
inline |
Unary - operator v2 = -v1 .
returning a vector expression
Definition at line 74 of file UnaryOperators.h.
|
inline |
Division of a scalar value by the vector element: v2(i) = a/v1(i) returning a vector expression.
Definition at line 854 of file BinaryOperators.h.
|
inline |
Division of the vector element by a scalar value: v2(i) = v1(i)/a returning a vector expression.
Definition at line 837 of file BinaryOperators.h.
|
inline |
Element by element division of vectors of the same dimension: v3(i) = v1(i)/v2(i) returning a vector expression.
Definition at line 784 of file BinaryOperators.h.
|
inline |
square of a vector v2(i) = v1(i)*v1(i) .
returning a vector expression
Definition at line 224 of file UnaryOperators.h.
|
inline |
square root of a vector (element by element) v2(i) = sqrt( v1(i) ) returning a vector expression
Definition at line 299 of file UnaryOperators.h.
|
inline |
Tensor Vector Product : M(i,j) = v(i) * v(j) returning a matrix expression.
Definition at line 885 of file MatrixFunctions.h.
|
inline |
Unit.
Return a vector of unit length: \( \vec{e}_v = \vec{v}/|\vec{v}| \).
Definition at line 382 of file Functions.h.