Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
df107_SingleTopAnalysis.py
Go to the documentation of this file.
1## \file
2## \ingroup tutorial_dataframe
3## \notebook -draw
4## A single top analysis using the ATLAS Open Data release of 2020, with RDataFrame.
5##
6## This tutorial is the analysis of single top production adapted from the ATLAS Open Data release in 2020
7## (http://opendata.atlas.cern/release/2020/documentation/). The data was recorded with the ATLAS detector
8## during 2016 at a center-of-mass energy of 13 TeV. Top quarks with a mass of about 172 GeV are mostly
9## produced in pairs but also appear alone, dominantly from the decays of a W boson in association with a light jet.
10##
11## The analysis is translated to a RDataFrame workflow processing up to 60 GB of simulated events and data.
12## By default the analysis runs on a preskimmed dataset to reduce the runtime. The full dataset can be used with
13## the --full-dataset argument and you can also run only on a fraction of the original dataset using the argument --lumi-scale.
14##
15## \macro_image
16## \macro_code
17## \macro_output
18##
19## \date July 2020
20## \author Stefan Wunsch (KIT, CERN)
21
22import ROOT
23import json
24import argparse
25import os
26
27# Argument parsing
28parser = argparse.ArgumentParser()
29parser.add_argument("--lumi-scale", type=float, default=0.05,
30 help="Run only on a fraction of the total available 10 fb^-1 (only usable together with --full-dataset)")
31parser.add_argument("--full-dataset", action="store_true", default=False,
32 help="Use the full dataset (use --lumi-scale to run only on a fraction of it)")
33parser.add_argument("-b", action="store_true", default=False, help="Use ROOT batch mode")
34parser.add_argument("-t", action="store_true", default=False, help="Use implicit multi threading (for the full dataset only possible with --lumi-scale 1.0)")
35args = parser.parse_args()
36
37if args.b: ROOT.gROOT.SetBatch(True)
38if args.t: ROOT.EnableImplicitMT()
39
40if not args.full_dataset: lumi_scale = 0.05 # The preskimmed dataset contains only 0.5 fb^-1
41else: lumi_scale = args.lumi_scale
42lumi = 10064.0
43print('Run on data corresponding to {:.1f} fb^-1 ...'.format(lumi * lumi_scale / 1000.0))
44
45if args.full_dataset: dataset_path = "root://eospublic.cern.ch//eos/opendata/atlas/OutreachDatasets/2020-01-22"
46else: dataset_path = "root://eospublic.cern.ch//eos/root-eos/reduced_atlas_opendata/singletop"
47
48# Create a ROOT dataframe for each dataset
49# Note that we load the filenames from the external json file placed in the same folder than this script.
50files = json.load(open(os.path.join(os.path.dirname(os.path.abspath(__file__)), "df107_SingleTopAnalysis.json")))
51processes = files.keys()
52df = {}
53xsecs = {}
54sumws = {}
55samples = []
56for p in processes:
57 for d in files[p]:
58 # Construct the dataframes
59 folder = d[0] # Folder name
60 sample = d[1] # Sample name
61 xsecs[sample] = d[2] # Cross-section
62 sumws[sample] = d[3] # Sum of weights
63 num_events = d[4] # Number of events
64 samples.append(sample)
65 df[sample] = ROOT.RDataFrame("mini", "{}/1lep/{}/{}.1lep.root".format(dataset_path, folder, sample))
66
67 # Scale down the datasets if requested
68 if args.full_dataset and lumi_scale < 1.0:
69 df[sample] = df[sample].Range(int(num_events * lumi_scale))
70
71# Select events for the analysis and make histograms of the top mass
72
73# Just-in-time compile custom helper function performing complex computations
74ROOT.gInterpreter.Declare("""
75using cRVecF = const ROOT::RVecF &;
76using cRVecI = const ROOT::RVecI &;
77int FindGoodLepton(cRVecI goodlep, cRVecI type, cRVecF lep_pt, cRVecF lep_eta, cRVecF lep_phi, cRVecF lep_e, cRVecF trackd0pv, cRVecF tracksigd0pv, cRVecF z0)
78{
79 int idx = -1; // Return -1 if no good lepton is found.
80 for(auto i = 0; i < type.size(); i++) {
81 if(!goodlep[i]) continue;
82 if (type[i] == 11 && abs(lep_eta[i]) < 2.47 && (abs(lep_eta[i]) < 1.37 || abs(lep_eta[i]) > 1.52) && abs(trackd0pv[i] / tracksigd0pv[i]) < 5) {
83 const ROOT::Math::PtEtaPhiEVector p(lep_pt[i], lep_eta[i], lep_phi[i], lep_e[i]);
84 if (abs(z0[i] * sin(p.Theta())) < 0.5) {
85 if (idx == -1) idx = i;
86 else return -1; // Accept only events with exactly one good lepton
87 }
88 }
89 if (type[i] == 13 && abs(lep_eta[i]) < 2.5 && abs(trackd0pv[i] / tracksigd0pv[i]) < 3) {
90 const ROOT::Math::PtEtaPhiEVector p(lep_pt[i], lep_eta[i], lep_phi[i], lep_e[i]);
91 if (abs(z0[i] * sin(p.Theta())) < 0.5) {
92 if (idx == -1) idx = i;
93 else return -1; // Accept only events with exactly one good lepton
94 }
95 }
96 }
97 return idx;
98}
99""")
100
101for s in samples:
102 # Select events with electron or muon trigger and with a missing transverse energy above 30 GeV
103 df[s] = df[s].Filter("trigE || trigM")\
104 .Filter("met_et > 30000")
105
106 # Perform preselection of highly isolated leptons
107 df[s] = df[s].Define("goodlep", "lep_isTightID && lep_pt > 35000 && lep_ptcone30 / lep_pt < 0.1 && lep_etcone20 / lep_pt < 0.1")\
108 .Filter("ROOT::VecOps::Sum(goodlep) > 0")
109
110 # Find a single good lepton, otherwise return -1 as index
111 df[s] = df[s].Define("idx_lep", "FindGoodLepton(goodlep, lep_type, lep_pt, lep_eta, lep_phi, lep_E, lep_trackd0pvunbiased, lep_tracksigd0pvunbiased, lep_z0)")\
112 .Filter("idx_lep != -1")
113
114 # Compute transverse mass of the W boson using the missing transverse energy and the good lepton
115 # Use only events with a transverse mass of the reconstructed W boson larger than 60 GeV
116 df[s] = df[s].Define("mtw", "sqrt(2 * lep_pt[idx_lep] * met_et * (1 - cos(lep_phi[idx_lep] - met_phi)))")\
117 .Filter("mtw > 60000")
118
119 # Perform preselection of jets
120 df[s] = df[s].Filter("ROOT::VecOps::Sum(jet_pt > 30000 && abs(jet_eta) < 2.5) > 0")
121
122 # Select events with two good jets and one b-jet and find the indices in the collections
123 df[s] = df[s].Define("goodjet", "jet_pt > 60000 || abs(jet_eta) > 2.4 || jet_jvt > 0.59")\
124 .Filter("ROOT::VecOps::Sum(goodjet) == 2")\
125 .Define("goodbjet", "goodjet && jet_MV2c10 > 0.8244273")\
126 .Filter("ROOT::VecOps::Sum(goodbjet) == 1")\
127 .Define("idx_tagged", "ROOT::VecOps::ArgMax(goodjet && goodbjet)")\
128 .Define("idx_untagged", "ROOT::VecOps::ArgMax(goodjet && !goodbjet)")
129
130 # Select events based on the jet kinematics and the scalar sum of the transverse momentum
131 # from the lepton, jets and met above 195 GeV
132 df[s] = df[s].Filter("abs(jet_eta[idx_untagged]) > 1.5 && abs(jet_eta[idx_tagged] - jet_eta[idx_untagged]) > 1.5")\
133 .Filter("lep_pt[idx_lep] + jet_pt[idx_tagged] + jet_pt[idx_untagged] + met_et > 195000")
134
135# Compute luminosity, scale factors and MC weights for simulated events
136for s in samples:
137 if "data" in s:
138 df[s] = df[s].Define("weight", "1.0")
139 else:
140 # The single top MC weights are either 1 or -1
141 if "single" in s: stop_norm = "mcWeight / abs(mcWeight)"
142 else: stop_norm = "mcWeight"
143 df[s] = df[s].Define("weight", "scaleFactor_ELE * scaleFactor_MUON * scaleFactor_LepTRIGGER * scaleFactor_PILEUP * scaleFactor_BTAG * {} * {} / {} * {}".format(stop_norm, xsecs[s], sumws[s], lumi))
144
145# Reconstruct the top mass from the lepton, the missing transverse energy and the b-jet
146
147# Just-in-time compile the function to compute the top mass from the constituents
148ROOT.gInterpreter.Declare("""
149float ComputeTopMass(float lep_pt, float lep_eta, float lep_phi, float lep_e, float jet_pt, float jet_eta, float jet_phi, float jet_e, float met_et, float met_phi)
150{
151 const ROOT::Math::PtEtaPhiEVector lep(lep_pt / 1000.0, lep_eta, lep_phi, lep_e / 1000.0);
152 const ROOT::Math::PtEtaPhiEVector met(met_et / 1000.0, 0, met_phi, met_et / 1000.0);
153 const ROOT::Math::PtEtaPhiEVector bjet(jet_pt / 1000.0, jet_eta, jet_phi, jet_e / 1000.0);
154 // Please note that we treat here the missing transverse energy as the neutrino, even though the z component is missing!
155 return (lep + met + bjet).M();
156}
157""")
158
159histos = {}
160for s in samples:
161 df[s] = df[s].Define("top_mass", "ComputeTopMass(lep_pt[idx_lep], lep_eta[idx_lep], lep_phi[idx_lep], lep_E[idx_lep], jet_pt[idx_tagged], jet_eta[idx_tagged], jet_phi[idx_tagged], jet_E[idx_tagged], met_et, met_phi)")
162 histos[s] = df[s].Histo1D(ROOT.RDF.TH1DModel("top_mass", "", 10, 100, 400), "top_mass", "weight")
163
164# Run the event loop and merge histograms of the respective processes
165
166# RunGraphs allows to run the event loops of the separate RDataFrame graphs
167# concurrently. This results in an improved usage of the available resources
168# if each separate RDataFrame can not utilize all available resources, e.g.,
169# because not enough data is available.
170ROOT.RDF.RunGraphs([histos[s] for s in samples])
171
172def merge_histos(label):
173 h = None
174 for i, d in enumerate(files[label]):
175 t = histos[d[1]].GetValue()
176 if i == 0: h = t.Clone()
177 else: h.Add(t)
178 h.SetNameTitle(label, label)
179 return h
180
181data = merge_histos("data")
182twtb = merge_histos("twtb")
183singletop = merge_histos("singletop")
184wjets = merge_histos("wjets")
185
186# Create the plot
187
188# Set styles
189ROOT.gROOT.SetStyle("ATLAS")
190
191# Create canvas with pad
192c = ROOT.TCanvas("c", "", 600, 600)
193pad = ROOT.TPad("upper_pad", "", 0, 0, 1, 1)
194pad.SetTickx(False)
195pad.SetTicky(False)
196pad.Draw()
197pad.cd()
198
199# Draw stack with MC contributions
200stack = ROOT.THStack()
201wjets.Scale(1.1) # Corrected normalization derived from a validation region
202for h, color in zip(
203 [wjets, twtb, singletop],
204 [(222, 90, 106), (155, 152, 204), (208, 240, 193)]):
205 h.SetLineWidth(1)
206 h.SetLineColor(1)
207 h.SetFillColor(ROOT.TColor.GetColor(*color))
208 stack.Add(h)
209stack.Draw("HIST")
210stack.GetXaxis().SetTitle("m_{W(l#nu)+b} [GeV]")
211stack.GetYaxis().SetTitle("Events")
212stack.GetYaxis().SetLabelSize(0.04)
213stack.GetYaxis().SetTitleSize(0.045)
214stack.GetXaxis().SetLabelSize(0.04)
215stack.GetXaxis().SetTitleSize(0.045)
216stack.SetMinimum(0)
217stack.SetMaximum(5000 * lumi_scale)
218stack.GetYaxis().ChangeLabel(1, -1, 0)
219
220# Draw data
221data.SetMarkerStyle(20)
222data.SetMarkerSize(1.2)
223data.SetLineWidth(2)
224data.SetLineColor(ROOT.kBlack)
225data.Draw("E SAME")
226
227# Add legend
228legend = ROOT.TLegend(0.60, 0.65, 0.92, 0.92)
229legend.SetTextFont(42)
230legend.SetFillStyle(0)
231legend.SetBorderSize(0)
232legend.SetTextSize(0.035)
233legend.SetTextAlign(32)
234legend.AddEntry(data, "Data" ,"lep")
235legend.AddEntry(singletop, "Single top + jet", "f")
236legend.AddEntry(twtb, "t#bar{t},Wt,t#bar{b}", "f")
237legend.AddEntry(wjets, "W+jets", "f")
238legend.Draw("SAME")
239
240# Add ATLAS label
241text = ROOT.TLatex()
242text.SetNDC()
243text.SetTextFont(72)
244text.SetTextSize(0.045)
245text.DrawLatex(0.21, 0.86, "ATLAS")
246text.SetTextFont(42)
247text.DrawLatex(0.21 + 0.16, 0.86, "Open Data")
248text.SetTextSize(0.04)
249text.DrawLatex(0.21, 0.80, "#sqrt{{s}} = 13 TeV, {:.1f} fb^{{-1}}".format(lumi * lumi_scale / 1000.0))
250
251# Save the plot
252c.SaveAs("df107_SingleTopAnalysis.png")
253print("Saved figure to df107_SingleTopAnalysis.png")
ROOT's RDataFrame offers a high level interface for analyses of data stored in TTree,...
void RunGraphs(std::vector< RResultHandle > handles)
Trigger the event loop of multiple RDataFrames concurrently.
void EnableImplicitMT(UInt_t numthreads=0)
Enable ROOT's implicit multi-threading for all objects and methods that provide an internal paralleli...
Definition TROOT.cxx:527
A struct which stores the parameters of a TH1D.
Ta Range(0, 0, 1, 1)