Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
df002_dataModel.C File Reference

Detailed Description

View in nbviewer Open in SWAN Show how to work with non-flat data models, e.g.

vectors of tracks.

This tutorial shows the possibility to use data models which are more complex than flat ntuples with RDataFrame

using FourVector = ROOT::Math::XYZTVector;
using FourVectorVec = std::vector<FourVector>;
using FourVectorRVec = ROOT::VecOps::RVec<FourVector>;
using CylFourVector = ROOT::Math::RhoEtaPhiVector;
// A simple helper function to fill a test tree: this makes the example
// stand-alone.
void fill_tree(const char *filename, const char *treeName)
{
const double M = 0.13957; // set pi+ mass
TRandom3 R(1);
auto genTracks = [&](){
FourVectorVec tracks;
const auto nPart = R.Poisson(15);
tracks.reserve(nPart);
for (int j = 0; j < nPart; ++j) {
const auto px = R.Gaus(0, 10);
const auto py = R.Gaus(0, 10);
const auto pt = sqrt(px * px + py * py);
const auto eta = R.Uniform(-3, 3);
const auto phi = R.Uniform(0.0, 2 * TMath::Pi());
CylFourVector vcyl(pt, eta, phi);
// set energy
auto E = sqrt(vcyl.R() * vcyl.R() + M * M);
// fill track vector
tracks.emplace_back(vcyl.X(), vcyl.Y(), vcyl.Z(), E);
}
return tracks;
};
d.Define("tracks", genTracks).Snapshot<FourVectorVec>(treeName, filename, {"tracks"});
}
{
// We prepare an input tree to run on
auto fileName = "df002_dataModel.root";
auto treeName = "myTree";
fill_tree(fileName, treeName);
// We read the tree from the file and create a RDataFrame, a class that
// allows us to interact with the data contained in the tree.
ROOT::RDataFrame d(treeName, fileName, {"tracks"});
// ## Operating on branches which are collection of objects
// Here we deal with the simplest of the cuts: we decide to accept the event
// only if the number of tracks is greater than 5.
auto n_cut = [](const FourVectorRVec &tracks) { return tracks.size() > 8; };
auto nentries = d.Filter(n_cut, {"tracks"}).Count();
std::cout << *nentries << " passed all filters" << std::endl;
// Another possibility consists in creating a new column containing the
// quantity we are interested in.
// In this example, we will cut on the number of tracks and plot their
// transverse momentum.
auto getPt = [](const FourVectorRVec &tracks) {
return ROOT::VecOps::Map(tracks, [](const FourVector& v){return v.Pt();});
};
// We do the same for the weights.
auto getPtWeights = [](const FourVectorRVec &tracks) {
return ROOT::VecOps::Map(tracks, [](const FourVector& v){ return 1. / v.Pt();});
};
auto augmented_d = d.Define("tracks_n", [](const FourVectorRVec &tracks) { return (int)tracks.size(); })
.Filter([](int tracks_n) { return tracks_n > 2; }, {"tracks_n"})
.Define("tracks_pts", getPt)
.Define("tracks_pts_weights", getPtWeights);
auto trN = augmented_d.Histo1D({"", "", 40, -.5, 39.5}, "tracks_n");
auto trPts = augmented_d.Histo1D("tracks_pts");
auto trWPts = augmented_d.Histo1D("tracks_pts", "tracks_pts_weights");
auto c1 = new TCanvas();
trN->DrawCopy();
auto c2 = new TCanvas();
trPts->DrawCopy();
auto c3 = new TCanvas();
trWPts->DrawCopy();
return 0;
}
#define d(i)
Definition RSha256.hxx:102
#define R(a, b, c, d, e, f, g, h, i)
Definition RSha256.hxx:110
int nentries
ROOT's RDataFrame offers a high level interface for analyses of data stored in TTree,...
A "std::vector"-like collection of values implementing handy operation to analyse them.
Definition RVec.hxx:1455
The Canvas class.
Definition TCanvas.h:23
Random number generator class based on M.
Definition TRandom3.h:27
TPaveText * pt
auto Map(Args &&... args)
Create new collection applying a callable to the elements of the input collection.
Definition RVec.hxx:2061
RVec< T > Filter(const RVec< T > &v, F &&f)
Create a new collection with the elements passing the filter expressed by the predicate.
Definition RVec.hxx:2086
return c1
Definition legend1.C:41
return c2
Definition legend2.C:14
return c3
Definition legend3.C:15
DisplacementVector3D< CylindricalEta3D< double >, DefaultCoordinateSystemTag > RhoEtaPhiVector
3D Vector based on the eta based cylindrical coordinates rho, eta, phi in double precision.
Definition Vector3Dfwd.h:62
LorentzVector< PxPyPzE4D< double > > XYZTVector
LorentzVector based on x,y,x,t (or px,py,pz,E) coordinates in double precision with metric (-,...
Definition Vector4Dfwd.h:46
constexpr Double_t Pi()
Definition TMath.h:37
void tracks()
Definition tracks.C:49
Date
December 2016
Author
Danilo Piparo (CERN)

Definition in file df002_dataModel.C.