This tutorial illustrates the basic features of the RDataFrame class, a utility which allows to interact with data stored in TTrees following a functional-chain like approach.
import ROOT
def fill_tree(treeName, fileName):
df.Define("b1", "(double) rdfentry_")\
.Define("b2", "(int) rdfentry_ * rdfentry_").Snapshot(treeName, fileName)
fileName = "df001_introduction_py.root"
treeName = "myTree"
fill_tree(treeName, fileName)
cutb1 = 'b1 < 5.'
cutb1b2 = 'b2 % 2 && b1 < 4.'
entries1 = d.Filter(cutb1) \
.Filter(cutb1b2) \
.Count();
print("%s entries passed all filters" %entries1.GetValue())
entries2 = d.Filter("b1 < 5.").Count();
print("%s entries passed all filters" %entries2.GetValue())
b1b2_cut = d.Filter(cutb1b2)
minVal = b1b2_cut.Min('b1')
maxVal = b1b2_cut.Max('b1')
meanVal = b1b2_cut.Mean('b1')
nonDefmeanVal = b1b2_cut.Mean("b2")
print("The mean is always included between the min and the max: %s <= %s <= %s" %(minVal.GetValue(), meanVal.GetValue(), maxVal.GetValue()))
hist = d.Filter(cutb1).Histo1D('b1')
print("Filled h %s times, mean: %s" %(hist.GetEntries(), hist.GetMean()))
cutb1_result = d.Filter(cutb1);
cutb1b2_result = d.Filter(cutb1b2);
cutb1_cutb1b2_result = cutb1_result.Filter(cutb1b2)
evts_cutb1_result = cutb1_result.Count()
evts_cutb1b2_result = cutb1b2_result.Count()
evts_cutb1_cutb1b2_result = cutb1_cutb1b2_result.Count()
print("Events passing cutb1: %s" %evts_cutb1_result.GetValue())
print("Events passing cutb1b2: %s" %evts_cutb1b2_result.GetValue())
print("Events passing both: %s" %evts_cutb1_cutb1b2_result.GetValue())
entries_sum = d.Define('sum', 'b2 + b1') \
.Filter('sum > 4.2') \
.Count()
print(entries_sum.GetValue())
ROOT's RDataFrame offers a high level interface for analyses of data stored in TTree,...
2 entries passed all filters
5 entries passed all filters
The mean is always included between the min and the max: 1.0 <= 2.0 <= 3.0
Filled h 5.0 times, mean: 2.0
Events passing cutb1: 5
Events passing cutb1b2: 2
Events passing both: 2
8