LSResidualFunc class description.
Internal class used for accessing the residuals of the Least Square function and their derivates which are estimated numerically using GSL numerical derivation. The class contains a pointer to the fit method function and an index specifying the i-th residual and wraps it in a multi-dim gradient function interface ROOT::Math::IGradientFunctionMultiDim. The class is used by ROOT::Math::GSLNLSMinimizer (GSL non linear least square fitter)
Definition at line 63 of file GSLNLSMinimizer.h.
|
| LSResidualFunc () |
|
| LSResidualFunc (const LSResidualFunc &rhs) |
|
| LSResidualFunc (const ROOT::Math::FitMethodFunction &func, unsigned int i) |
|
IMultiGenFunction * | Clone () const |
| Clone a function.
|
|
void | FdF (const double *x, double &f, double *g) const |
|
void | Gradient (const double *x, double *g) const |
|
unsigned int | NDim () const |
| Retrieve the dimension of the function.
|
|
LSResidualFunc & | operator= (const LSResidualFunc &rhs) |
|
virtual | ~IGradientFunctionMultiDimTempl () |
| Virtual Destructor (no operations)
|
|
virtual void | FdF (const T *x, T &f, T *df) const |
| Optimized method to evaluate at the same time the function value and derivative at a point x.
|
|
virtual void | Gradient (const T *x, T *grad) const |
| Evaluate all the vector of function derivatives (gradient) at a point x.
|
|
virtual void | GradientWithPrevResult (const T *x, T *grad, T *previous_grad, T *previous_g2, T *previous_gstep) const |
| In some cases, the gradient algorithm will use information from the previous step, these can be passed in with this overload.
|
|
virtual bool | returnsInMinuit2ParameterSpace () const |
|
| IBaseFunctionMultiDimTempl () |
|
virtual | ~IBaseFunctionMultiDimTempl () |
| virtual destructor
|
|
T | operator() (const T *x) const |
| Evaluate the function at a point x[].
|
|
virtual | ~IGradientMultiDimTempl () |
| virual destructor
|
|
T | Derivative (const T *x, unsigned int icoord, T *previous_grad, T *previous_g2, T *previous_gstep) const |
| In some cases, the derivative algorithm will use information from the previous step, these can be passed in with this overload.
|
|
T | Derivative (const T *x, unsigned int icoord=0) const |
| Return the partial derivative with respect to the passed coordinate.
|
|