176 for (
Int_t i=0; i<ny; i++)
183 for (
Int_t i=0; i<nx; i++)
184 fY0[i] =
x[index[i]];
186 for (
Int_t i=0; i<ny; i++)
227 prob[k-1] = (k-0.375)/(
fNpoints+0.25);
253 fX[i] = (1-pfrac)*
fY0[pint]+pfrac*
fY0[pint+1];
virtual Int_t GetQuantiles(Int_t nprobSum, Double_t *q, const Double_t *probSum)
Compute Quantiles for density distribution of this function.
This class allows to draw quantile-quantile plots.
void Quartiles()
compute quartiles a quartile is a 25 per cent or 75 per cent quantile
TGraphQQ()
default constructor
virtual ~TGraphQQ()
Destroys a TGraphQQ.
TF1 * fF
theoretical density function, if specified
Double_t fYq1
y1 coordinate of the interquartile line
Double_t * fY0
! second dataset, if specified
void SetFunction(TF1 *f)
Sets the theoretical distribution function (density!) and computes its quantiles.
Double_t fXq2
x2 coordinate of the interquartile line
Int_t fNy0
size of the fY0 dataset
void MakeFunctionQuantiles()
Computes quantiles of theoretical distribution function.
Double_t fXq1
x1 coordinate of the interquartile line
Double_t fYq2
y2 coordinate of the interquartile line
void MakeQuantiles()
When sample sizes are not equal, computes quantiles of the bigger sample by linear interpolation.
A TGraph is an object made of two arrays X and Y with npoints each.
Int_t fNpoints
Number of points <= fMaxSize.
Double_t * fY
[fNpoints] array of Y points
Bool_t CtorAllocate()
In constructors set fNpoints than call this method.
Double_t * fX
[fNpoints] array of X points
virtual const char * GetTitle() const
Returns title of object.
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Short_t Max(Short_t a, Short_t b)
Int_t FloorNint(Double_t x)
Double_t NormQuantile(Double_t p)
Computes quantiles for standard normal distribution N(0, 1) at probability p.
void Sort(Index n, const Element *a, Index *index, Bool_t down=kTRUE)
void Quantiles(Int_t n, Int_t nprob, Double_t *x, Double_t *quantiles, Double_t *prob, Bool_t isSorted=kTRUE, Int_t *index=0, Int_t type=7)
Computes sample quantiles, corresponding to the given probabilities.