114 assert (npar == (
int) minpar.size() );
117 for (
int i =0; i < npar; ++i) {
118 diff += std::abs( params[i] - minpar[i] );
122 if (diff > s * 1.E-12 )
Warning(
"Chisquare",
"given parameter values are not at minimum - chi2 at minimum is returned");
123 return fFitter->Result().Chi2();
138 std::cout<<
"Execute command= "<<command<<std::endl;
150 Error(
"ExecuteCommand",
"FCN must set before executing this command");
156 return (ret) ? 0 : -1;
164 Error(
"ExecuteCommand",
"FCN must set before executing this command");
168 return (ret) ? 0 : -1;
174 Error(
"ExecuteCommand",
"FCN must set before executing this command");
180 return (ret) ? 0 : -1;
186 Error(
"ExecuteCommand",
"FCN must set before executing this command");
192 return (ret) ? 0 : -1;
195 else if (scommand.
Contains(
"MINO")) {
197 if (
fFitter->Config().MinosErrors() )
return 0;
200 Error(
"ExecuteCommand",
"FCN must set before executing this command");
204 fFitter->Config().SetMinosErrors(
true);
209 return (ret) ? 0 : -1;
213 else if (scommand.
Contains(
"HES")) {
215 if (
fFitter->Config().ParabErrors() )
return 0;
218 Error(
"ExecuteCommand",
"FCN must set before executing this command");
223 fFitter->Config().SetParabErrors(
true);
226 return (ret) ? 0 : -1;
230 else if (scommand.
Contains(
"FIX")) {
231 for(
int i = 0; i < nargs; i++) {
237 else if (scommand.
Contains(
"SET LIM")) {
239 Error(
"ExecuteCommand",
"Invalid parameters given in SET LIMIT");
242 int ipar =
int(args[0]);
244 double low = args[1];
246 fFitter->Config().ParSettings(ipar).SetLimits(low,up);
250 else if (scommand.
Contains(
"SET PRIN")) {
251 if (nargs < 1)
return -1;
252 fFitter->Config().MinimizerOptions().SetPrintLevel(
int(args[0]) );
256 else if (scommand.
Contains(
"SET ERR")) {
257 if (nargs < 1)
return -1;
258 fFitter->Config().MinimizerOptions().SetPrintLevel(
int( args[0]) );
262 else if (scommand.
Contains(
"SET STR")) {
263 if (nargs < 1)
return -1;
264 fFitter->Config().MinimizerOptions().SetStrategy(
int(args[0]) );
268 else if (scommand.
Contains(
"SET GRA")) {
274 else if (scommand.
Contains(
"SET NOW")) {
280 else if (scommand.
Contains(
"CALL FCN")) {
283 if (nargs < 1 ||
fFCN == 0 )
return -1;
286 std::vector<double> params(npar);
287 for (
int i = 0; i < npar; ++i)
291 (*fFCN)(npar, 0, fval, ¶ms[0],
int(args[0]) ) ;
296 Error(
"ExecuteCommand",
"Invalid or not supported command given %s",command);
305 int nps =
fFitter->Config().ParamsSettings().size();
306 if (ipar < 0 || ipar >= nps ) {
308 Error(
"ValidParameterIndex",
"%s",msg.c_str());
319 fFitter->Config().ParSettings(ipar).Fix();
335 if (!
fFitter->Result().IsValid()) {
336 Error(
"GetConfidenceIntervals",
"Cannot compute confidence intervals with an invalide fit result");
340 fFitter->Result().GetConfidenceIntervals(
n,ndim,1,
x,ci,cl,
false);
370 if (!
fFitter->Result().IsValid() ) {
371 Error(
"GetConfidenceIntervals",
"Cannot compute confidence intervals with an invalide fit result");
379 Error(
"GetConfidenceIntervals",
"Cannot compute confidence intervals without a fitting object");
383 if (fitobj->
InheritsFrom(TGraph2D::Class())) datadim = 2;
385 TH1 *
h1 =
dynamic_cast<TH1*
>(fitobj);
392 Error(
"GetConfidenceIntervals",
"Invalid object passed for storing confidence level data, must be a TGraphErrors or a TH1");
398 Error(
"GetConfidenceIntervals",
"Invalid object passed for storing confidence level data, must be a TGraph2DErrors or a TH2");
404 Error(
"GetConfidenceIntervals",
"Invalid object passed for storing confidence level data, must be a TH3");
423 unsigned int n = data.
Size();
425 std::vector<double> ci(
n );
427 fFitter->Result().GetConfidenceIntervals(data,&ci[0],cl,
false);
433 for (
unsigned int i = 0; i <
n; ++i) {
434 const double *
x = data.
Coords(i);
435 double y = (*func)(
x );
450 TH1 *
h1 =
dynamic_cast<TH1 *
> (obj);
471 if (
fCovar.size() != nfreepar*nfreepar )
472 fCovar.resize(nfreepar*nfreepar);
474 if (!
fFitter->Result().IsValid() ) {
475 Warning(
"GetCovarianceMatrix",
"Invalid fit result");
480 for (
unsigned int i = 0; i < ntotpar; ++i) {
481 if (
fFitter->Config().ParSettings(i).IsFixed() )
continue;
483 for (
unsigned int j = 0; j < ntotpar; ++j) {
484 if (
fFitter->Config().ParSettings(j).IsFixed() )
continue;
485 unsigned int index = nfreepar*
l +
m;
486 assert(index <
fCovar.size() );
499 unsigned int np2 =
fCovar.size();
501 if ( np2 == 0 || np2 != npar *npar ) {
503 if (
c == 0)
return 0;
505 return fCovar[i*npar + j];
516 Warning(
"GetErrors",
"Invalid fit result");
520 eparab = result.
Error(ipar);
531 return fFitter->Result().NTotalParameters();
535 return fFitter->Result().NFreeParameters();
542 if (
fFitter->Result().IsEmpty() ) {
546 return fFitter->Result().Error(ipar);
553 if (
fFitter->Result().IsEmpty() ) {
557 return fFitter->Result().Value(ipar);
567 const std::string & pname =
fFitter->Config().ParSettings(ipar).Name();
568 const char *
c = pname.c_str();
569 std::copy(
c,
c + pname.size(),
name);
571 if (
fFitter->Result().IsEmpty() ) {
572 value =
fFitter->Config().ParSettings(ipar).Value();
573 verr =
fFitter->Config().ParSettings(ipar).Value();
574 vlow =
fFitter->Config().ParSettings(ipar).LowerLimit();
575 vhigh =
fFitter->Config().ParSettings(ipar).UpperLimit();
579 value =
fFitter->Result().Value(ipar);
580 verr =
fFitter->Result().Error(ipar);
581 vlow =
fFitter->Result().LowerError(ipar);
582 vhigh =
fFitter->Result().UpperError(ipar);
594 return fFitter->Config().ParSettings(ipar).Name().c_str();
604 errdef =
fFitter->Config().MinimizerOptions().ErrorDef();
614 Warning(
"GetSumLog",
"Dummy method - returned 0");
625 return fFitter->Config().ParSettings(ipar).IsFixed();
633 if (
fFitter->GetMinimizer() &&
fFitter->Config().MinimizerType() ==
"Minuit")
634 fFitter->GetMinimizer()->PrintResults();
636 if (level > 0)
fFitter->Result().Print(std::cout);
637 if (level > 1)
fFitter->Result().PrintCovMatrix(std::cout);
647 fFitter->Config().ParSettings(ipar).Release();
655 Info(
"SetFitMethod",
"non supported method");
664 std::vector<ROOT::Fit::ParameterSettings> & parlist =
fFitter->Config().ParamsSettings();
665 if ( ipar >= (
int) parlist.size() ) parlist.resize(ipar+1);
667 if (verr == 0) ps.
Fix();
668 if (vlow < vhigh) ps.
SetLimits(vlow, vhigh);
692 if (
fFitter->Result().FittedFunction() != 0) {
716 Error(
"SetMinimizerFunction",
"cannot create minimizer %s",
fFitter->Config().MinimizerType().c_str() );
720 Error(
"SetMinimizerFunction",
"Object Function pointer is NULL");
758 int ndim =
fFitter->Config().ParamsSettings().size();
781 return fFitter->GetMinimizer();
800 if (!
gr)
return false;
803 Error(
"Scan",
"Minimizer is not available - cannot scan before fitting");
807 unsigned int npoints =
gr->
GetN();
813 if ((
int) npoints < gr->GetN() )
gr->
Set(npoints);
853 if (!
gr)
return false;
856 Error(
"Scan",
"Minimizer is not available - cannot scan before fitting");
861 double upScale =
fFitter->Config().MinimizerOptions().ErrorDef();
868 unsigned int npoints =
gr->
GetN();
874 if ((
int) npoints < gr->GetN() )
gr->
Set(npoints);
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
Chi2FCN class for binnned fits using the least square methods.
void SetDimension(int dim)
unsigned int Size() const
return number of fit points
const DataOptions & Opt() const
access to options
const double * Coords(unsigned int ipoint) const
return a pointer to the coordinates data for the given fit point
class containg the result of the fit and all the related information (fitted parameter values,...
bool IsValid() const
True if fit successful, otherwise false.
double UpperError(unsigned int i) const
upper Minos error. If Minos has not run for parameter i return the parabolic error
double Error(unsigned int i) const
parameter error by index
double LowerError(unsigned int i) const
lower Minos error. If Minos has not run for parameter i return the parabolic error
double MinFcnValue() const
Return value of the objective function (chi2 or likelihood) used in the fit.
double Edm() const
Expected distance from minimum.
unsigned int NTotalParameters() const
get total number of parameters
unsigned int NFreeParameters() const
get total number of free parameters
double GlobalCC(unsigned int i) const
parameter global correlation coefficient
LogLikelihoodFCN class for likelihood fits.
Class, describing value, limits and step size of the parameters Provides functionality also to set/re...
void SetLimits(double low, double up)
set a double side limit, if low == up the parameter is fixed if low > up the limits are removed The c...
void Fix()
fix the parameter
class evaluating the log likelihood for binned Poisson likelihood fits it is template to distinguish ...
Class describing the unbinned data sets (just x coordinates values) of any dimensions.
Documentation for the abstract class IBaseFunctionMultiDim.
virtual IBaseFunctionMultiDimTempl< T > * Clone() const =0
Clone a function.
virtual unsigned int NDim() const =0
Retrieve the dimension of the function.
virtual const double * Parameters() const =0
Access the parameter values.
Abstract Minimizer class, defining the interface for the various minimizer (like Minuit2,...
void SetErrorDef(double up)
set scale for calculating the errors
virtual void SetFunction(const ROOT::Math::IMultiGenFunction &func)=0
set the function to minimize
virtual bool Contour(unsigned int ivar, unsigned int jvar, unsigned int &npoints, double *xi, double *xj)
find the contour points (xi, xj) of the function for parameter ivar and jvar around the minimum The c...
virtual bool Scan(unsigned int ivar, unsigned int &nstep, double *x, double *y, double xmin=0, double xmax=0)
scan function minimum for variable i.
Backward compatible implementation of TVirtualFitter.
ROOT::Math::Minimizer * fMinimizer
void DoSetDimension()
Private method to set dimension in objective function.
virtual void SetFCN(void(*fcn)(Int_t &, Double_t *, Double_t &f, Double_t *, Int_t))
Override setFCN to use the Adapter to Minuit2 FCN interface To set the address of the minimization fu...
virtual Int_t SetParameter(Int_t ipar, const char *parname, Double_t value, Double_t verr, Double_t vlow, Double_t vhigh)
Set (add) a new fit parameter passing initial value, step size (verr) and parameter limits if vlow > ...
virtual Double_t Chisquare(Int_t npar, Double_t *params) const
Do chisquare calculations in case of likelihood fits Do evaluation a the minimum only.
virtual Int_t GetNumberFreeParameters() const
ROOT::Math::Minimizer * GetMinimizer() const
Return a pointer to the minimizer.
virtual void PrintResults(Int_t level, Double_t amin) const
Print the fit result.
virtual Double_t GetCovarianceMatrixElement(Int_t i, Int_t j) const
Get error matrix element (return all zero if matrix is not available)
virtual ~TBackCompFitter()
Destructor - delete the managed objects.
virtual Double_t GetParError(Int_t ipar) const
Parameter error.
TBackCompFitter()
Constructor needed by TVirtualFitter interface.
virtual Double_t GetSumLog(Int_t i)
Sum of log (un-needed)
virtual void ReleaseParameter(Int_t ipar)
Release a fit parameter.
virtual Int_t GetErrors(Int_t ipar, Double_t &eplus, Double_t &eminus, Double_t &eparab, Double_t &globcc) const
Get fit errors.
virtual void GetConfidenceIntervals(Int_t n, Int_t ndim, const Double_t *x, Double_t *ci, Double_t cl=0.95)
Computes point-by-point confidence intervals for the fitted function.
std::shared_ptr< ROOT::Fit::FitData > fFitData
! Data of the fit
virtual Int_t GetStats(Double_t &amin, Double_t &edm, Double_t &errdef, Int_t &nvpar, Int_t &nparx) const
Get fit statistical information.
virtual void Clear(Option_t *option="")
Clear resources for consecutive fits.
ROOT::Math::IParamMultiFunction * fModelFunc
virtual Int_t GetNumberTotalParameters() const
Number of total parameters.
virtual Double_t GetParameter(Int_t ipar) const
Parameter value.
TFitResult * GetTFitResult() const
Get a copy of the Fit result returning directly a new TFitResult.
void ReCreateMinimizer()
Recreate a minimizer instance using the function and data set objective function in minimizers functi...
std::shared_ptr< ROOT::Fit::Fitter > fFitter
! Pointer to fitter object
virtual void SetFitMethod(const char *name)
Set fit method (chi2 or likelihood).
std::vector< double > fCovar
Cached covariance matrix (NxN)
bool ValidParameterIndex(int ipar) const
Check if ipar is a valid parameter index.
virtual Bool_t IsFixed(Int_t ipar) const
Query if parameter ipar is fixed.
bool Contour(unsigned int ipar, unsigned int jpar, TGraph *gr, double confLevel=0.683)
Create a 2D contour around the minimum for the parameter ipar and jpar if a minimum does not exist or...
virtual Int_t ExecuteCommand(const char *command, Double_t *args, Int_t nargs)
Execute the command (Fortran Minuit compatible interface)
virtual const char * GetParName(Int_t ipar) const
Return name of parameter ipar.
virtual void FixParameter(Int_t ipar)
Fix the parameter.
ROOT::Math::IMultiGenFunction * GetObjFunction() const
Return a pointer to the objective function (FCN) If fitting directly using TBackCompFitter the pointe...
virtual void SetObjFunction(ROOT::Math::IMultiGenFunction *f)
Set the objective function for fitting Needed if fitting directly using TBackCompFitter class The cla...
virtual Double_t * GetCovarianceMatrix() const
Get the error matrix in a pointer to a NxN array.
bool Scan(unsigned int ipar, TGraph *gr, double xmin=0, double xmax=0)
Scan parameter ipar between value of xmin and xmax A graph must be given which will be on return fill...
ROOT::Math::IMultiGenFunction * fObjFunc
Extends the ROOT::Fit::Result class with a TNamed inheritance providing easy possibility for I/O.
Graph 2D class with errors.
Graphics object made of three arrays X, Y and Z with the same number of points each.
A TGraphErrors is a TGraph with error bars.
virtual void SetPointError(Double_t ex, Double_t ey)
Set ex and ey values for point pointed by the mouse.
A TGraph is an object made of two arrays X and Y with npoints each.
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Set x and y values for point number i.
virtual void Set(Int_t n)
Set number of points in the graph Existing coordinates are preserved New coordinates above fNpoints a...
TH1 is the base class of all histogram classes in ROOT.
virtual Int_t GetDimension() const
virtual void SetBinError(Int_t bin, Double_t error)
Set the bin Error Note that this resets the bin eror option to be of Normal Type and for the non-empt...
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
virtual Int_t FindBin(Double_t x, Double_t y=0, Double_t z=0)
Return Global bin number corresponding to x,y,z.
virtual void SetName(const char *name)
Set the name of the TNamed.
virtual TObject * Clone(const char *newname="") const
Make a clone of an object using the Streamer facility.
Mother of all ROOT objects.
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
virtual void Info(const char *method, const char *msgfmt,...) const
Issue info message.
void ToUpper()
Change string to upper case.
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
virtual TObject * GetObjectFit() const
virtual Foption_t GetFitOption() const
static const char * GetDefaultFitter()
static: return the name of the default fitter
void(* fFCN)(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag)
void FillData(BinData &dv, const TH1 *hist, TF1 *func=0)
fill the data vector from a TH1.
std::string ToString(const T &val)
Utility function for conversion to strings.
Double_t ChisquareQuantile(Double_t p, Double_t ndf)
Evaluate the quantiles of the chi-squared probability distribution function.
bool fUseEmpty
normalize data by a normalized the bin volume (bin volume divided by a reference value)