Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
ROOT::Math::Quaternion Class Reference

Rotation class with the (3D) rotation represented by a unit quaternion (u, i, j, k).

This is the optimal representation for multiplication of multiple rotations, and for computation of group-manifold-invariant distance between two rotations. See also ROOT::Math::AxisAngle, ROOT::Math::EulerAngles, and ROOT::Math::Rotation3D.

Definition at line 47 of file Quaternion.h.

Public Types

typedef double Scalar
 
typedef DisplacementVector3D< Cartesian3D< double >, DefaultCoordinateSystemTagXYZVector
 Rotation operation on a cartesian vector.
 

Public Member Functions

 Quaternion ()
 Default constructor (identity rotation)
 
template<class OtherRotation >
 Quaternion (const OtherRotation &r)
 Construct from another supported rotation type (see gv_detail::convert )
 
template<class IT >
 Quaternion (IT begin, IT end)
 Construct given a pair of pointers or iterators defining the beginning and end of an array of four Scalars.
 
 Quaternion (Scalar u, Scalar i, Scalar j, Scalar k)
 Construct from four Scalars representing the coefficients of u, i, j, k.
 
Scalar Distance (const Quaternion &q) const
 Distance between two rotations in Quaternion form Note: The rotation group is isomorphic to a 3-sphere with diametrically opposite points identified.
 
template<class IT >
void GetComponents (IT begin) const
 Get the components into data specified by an iterator begin.
 
template<class IT >
void GetComponents (IT begin, IT end) const
 Get the components into data specified by an iterator begin and another to the end of the desired data (4 past start).
 
void GetComponents (Scalar &u, Scalar &i, Scalar &j, Scalar &k) const
 Get the components into four Scalars.
 
Scalar I () const
 
Quaternion Inverse () const
 Return inverse of a rotation.
 
void Invert ()
 Invert a rotation in place.
 
Scalar J () const
 
Scalar K () const
 
bool operator!= (const Quaternion &rhs) const
 
template<class CoordSystem , class Tag >
DisplacementVector3D< CoordSystem, Tag > operator() (const DisplacementVector3D< CoordSystem, Tag > &v) const
 Rotation operation on a displacement vector in any coordinate system.
 
template<class ForeignVector >
ForeignVector operator() (const ForeignVector &v) const
 Rotation operation on an arbitrary vector v.
 
template<class CoordSystem >
LorentzVector< CoordSystem > operator() (const LorentzVector< CoordSystem > &v) const
 Rotation operation on a Lorentz vector in any 4D coordinate system.
 
template<class CoordSystem , class Tag >
PositionVector3D< CoordSystem, Tag > operator() (const PositionVector3D< CoordSystem, Tag > &p) const
 Rotation operation on a position vector in any coordinate system.
 
XYZVector operator() (const XYZVector &v) const
 
template<class AVector >
AVector operator* (const AVector &v) const
 Overload operator * for rotation on a vector.
 
Quaternion operator* (const AxisAngle &a) const
 
Quaternion operator* (const EulerAngles &e) const
 
Quaternion operator* (const Quaternion &q) const
 Multiply (combine) two rotations.
 
Quaternion operator* (const Rotation3D &r) const
 
Quaternion operator* (const RotationX &rx) const
 
Quaternion operator* (const RotationY &ry) const
 
Quaternion operator* (const RotationZ &rz) const
 
Quaternion operator* (const RotationZYX &r) const
 
template<class R >
Quaternionoperator*= (const R &r)
 Post-Multiply (on right) by another rotation : T = T*R.
 
template<class OtherRotation >
Quaternionoperator= (OtherRotation const &r)
 Assign from another supported rotation type (see gv_detail::convert )
 
bool operator== (const Quaternion &rhs) const
 Equality/inequality operators.
 
void Rectify ()
 Re-adjust components to eliminate small deviations from |Q| = 1 orthonormality.
 
template<class IT >
void SetComponents (IT begin, IT end)
 Set the four components given an iterator to the start of the desired data, and another to the end (4 past start).
 
void SetComponents (Scalar u, Scalar i, Scalar j, Scalar k)
 Set the components based on four Scalars.
 
Scalar U () const
 Access to the four quaternion components: U() is the coefficient of the identity Pauli matrix, I(), J() and K() are the coefficients of sigma_x, sigma_y, sigma_z.
 

Private Attributes

Scalar fI
 
Scalar fJ
 
Scalar fK
 
Scalar fU
 

#include <Math/GenVector/Quaternion.h>

Member Typedef Documentation

◆ Scalar

Definition at line 51 of file Quaternion.h.

◆ XYZVector

Rotation operation on a cartesian vector.

Definition at line 175 of file Quaternion.h.

Constructor & Destructor Documentation

◆ Quaternion() [1/4]

ROOT::Math::Quaternion::Quaternion ( )
inline

Default constructor (identity rotation)

Definition at line 58 of file Quaternion.h.

◆ Quaternion() [2/4]

template<class IT >
ROOT::Math::Quaternion::Quaternion ( IT  begin,
IT  end 
)
inline

Construct given a pair of pointers or iterators defining the beginning and end of an array of four Scalars.

Definition at line 70 of file Quaternion.h.

◆ Quaternion() [3/4]

template<class OtherRotation >
ROOT::Math::Quaternion::Quaternion ( const OtherRotation &  r)
inlineexplicit

Construct from another supported rotation type (see gv_detail::convert )

Definition at line 78 of file Quaternion.h.

◆ Quaternion() [4/4]

ROOT::Math::Quaternion::Quaternion ( Scalar  u,
Scalar  i,
Scalar  j,
Scalar  k 
)
inline

Construct from four Scalars representing the coefficients of u, i, j, k.

Definition at line 84 of file Quaternion.h.

Member Function Documentation

◆ Distance()

Quaternion::Scalar ROOT::Math::Quaternion::Distance ( const Quaternion q) const

Distance between two rotations in Quaternion form Note: The rotation group is isomorphic to a 3-sphere with diametrically opposite points identified.

The (rotation group-invariant) is the smaller of the two possible angles between the images of the two totations on that sphere. Thus the distance is never greater than pi/2.

Definition at line 91 of file Quaternion.cxx.

◆ GetComponents() [1/3]

template<class IT >
void ROOT::Math::Quaternion::GetComponents ( IT  begin) const
inline

Get the components into data specified by an iterator begin.

Definition at line 138 of file Quaternion.h.

◆ GetComponents() [2/3]

template<class IT >
void ROOT::Math::Quaternion::GetComponents ( IT  begin,
IT  end 
) const
inline

Get the components into data specified by an iterator begin and another to the end of the desired data (4 past start).

Definition at line 125 of file Quaternion.h.

◆ GetComponents() [3/3]

void ROOT::Math::Quaternion::GetComponents ( Scalar u,
Scalar i,
Scalar j,
Scalar k 
) const
inline

Get the components into four Scalars.

Definition at line 156 of file Quaternion.h.

◆ I()

Scalar ROOT::Math::Quaternion::I ( ) const
inline

Definition at line 166 of file Quaternion.h.

◆ Inverse()

Quaternion ROOT::Math::Quaternion::Inverse ( ) const
inline

Return inverse of a rotation.

Definition at line 253 of file Quaternion.h.

◆ Invert()

void ROOT::Math::Quaternion::Invert ( )
inline

Invert a rotation in place.

Definition at line 248 of file Quaternion.h.

◆ J()

Scalar ROOT::Math::Quaternion::J ( ) const
inline

Definition at line 167 of file Quaternion.h.

◆ K()

Scalar ROOT::Math::Quaternion::K ( ) const
inline

Definition at line 168 of file Quaternion.h.

◆ operator!=()

bool ROOT::Math::Quaternion::operator!= ( const Quaternion rhs) const
inline

Definition at line 307 of file Quaternion.h.

◆ operator()() [1/5]

template<class CoordSystem , class Tag >
DisplacementVector3D< CoordSystem, Tag > ROOT::Math::Quaternion::operator() ( const DisplacementVector3D< CoordSystem, Tag > &  v) const
inline

Rotation operation on a displacement vector in any coordinate system.

Definition at line 191 of file Quaternion.h.

◆ operator()() [2/5]

template<class ForeignVector >
ForeignVector ROOT::Math::Quaternion::operator() ( const ForeignVector &  v) const
inline

Rotation operation on an arbitrary vector v.

Preconditions: v must implement methods x(), y(), and z() and the arbitrary vector type must have a constructor taking (x,y,z)

Definition at line 229 of file Quaternion.h.

◆ operator()() [3/5]

template<class CoordSystem >
LorentzVector< CoordSystem > ROOT::Math::Quaternion::operator() ( const LorentzVector< CoordSystem > &  v) const
inline

Rotation operation on a Lorentz vector in any 4D coordinate system.

Definition at line 215 of file Quaternion.h.

◆ operator()() [4/5]

template<class CoordSystem , class Tag >
PositionVector3D< CoordSystem, Tag > ROOT::Math::Quaternion::operator() ( const PositionVector3D< CoordSystem, Tag > &  p) const
inline

Rotation operation on a position vector in any coordinate system.

Definition at line 204 of file Quaternion.h.

◆ operator()() [5/5]

XYZVector ROOT::Math::Quaternion::operator() ( const XYZVector v) const
inline

Definition at line 176 of file Quaternion.h.

◆ operator*() [1/9]

template<class AVector >
AVector ROOT::Math::Quaternion::operator* ( const AVector &  v) const
inline

Overload operator * for rotation on a vector.

Definition at line 240 of file Quaternion.h.

◆ operator*() [2/9]

Quaternion ROOT::Math::Quaternion::operator* ( const AxisAngle a) const

Definition at line 76 of file Quaternion.cxx.

◆ operator*() [3/9]

Quaternion ROOT::Math::Quaternion::operator* ( const EulerAngles e) const

Definition at line 81 of file Quaternion.cxx.

◆ operator*() [4/9]

Quaternion ROOT::Math::Quaternion::operator* ( const Quaternion q) const
inline

Multiply (combine) two rotations.

Multiply (combine) two rotations

Definition at line 263 of file Quaternion.h.

◆ operator*() [5/9]

Quaternion ROOT::Math::Quaternion::operator* ( const Rotation3D r) const

Definition at line 71 of file Quaternion.cxx.

◆ operator*() [6/9]

Quaternion ROOT::Math::Quaternion::operator* ( const RotationX rx) const

Definition at line 29 of file QuaternionXaxial.cxx.

◆ operator*() [7/9]

Quaternion ROOT::Math::Quaternion::operator* ( const RotationY ry) const

Definition at line 40 of file QuaternionXaxial.cxx.

◆ operator*() [8/9]

Quaternion ROOT::Math::Quaternion::operator* ( const RotationZ rz) const

Definition at line 51 of file QuaternionXaxial.cxx.

◆ operator*() [9/9]

Quaternion ROOT::Math::Quaternion::operator* ( const RotationZYX r) const

Definition at line 86 of file Quaternion.cxx.

◆ operator*=()

template<class R >
Quaternion & ROOT::Math::Quaternion::operator*= ( const R r)
inline

Post-Multiply (on right) by another rotation : T = T*R.

Definition at line 282 of file Quaternion.h.

◆ operator=()

template<class OtherRotation >
Quaternion & ROOT::Math::Quaternion::operator= ( OtherRotation const &  r)
inline

Assign from another supported rotation type (see gv_detail::convert )

Definition at line 99 of file Quaternion.h.

◆ operator==()

bool ROOT::Math::Quaternion::operator== ( const Quaternion rhs) const
inline

Equality/inequality operators.

Definition at line 300 of file Quaternion.h.

◆ Rectify()

void ROOT::Math::Quaternion::Rectify ( )

Re-adjust components to eliminate small deviations from |Q| = 1 orthonormality.

Definition at line 34 of file Quaternion.cxx.

◆ SetComponents() [1/2]

template<class IT >
void ROOT::Math::Quaternion::SetComponents ( IT  begin,
IT  end 
)
inline

Set the four components given an iterator to the start of the desired data, and another to the end (4 past start).

Definition at line 111 of file Quaternion.h.

◆ SetComponents() [2/2]

void ROOT::Math::Quaternion::SetComponents ( Scalar  u,
Scalar  i,
Scalar  j,
Scalar  k 
)
inline

Set the components based on four Scalars.

The sum of the squares of these Scalars should be 1; no checking is done.

Definition at line 149 of file Quaternion.h.

◆ U()

Scalar ROOT::Math::Quaternion::U ( ) const
inline

Access to the four quaternion components: U() is the coefficient of the identity Pauli matrix, I(), J() and K() are the coefficients of sigma_x, sigma_y, sigma_z.

Definition at line 165 of file Quaternion.h.

Member Data Documentation

◆ fI

Scalar ROOT::Math::Quaternion::fI
private

Definition at line 314 of file Quaternion.h.

◆ fJ

Scalar ROOT::Math::Quaternion::fJ
private

Definition at line 315 of file Quaternion.h.

◆ fK

Scalar ROOT::Math::Quaternion::fK
private

Definition at line 316 of file Quaternion.h.

◆ fU

Scalar ROOT::Math::Quaternion::fU
private

Definition at line 313 of file Quaternion.h.

Libraries for ROOT::Math::Quaternion:

The documentation for this class was generated from the following files: