Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
StandardHypoTestInvDemo.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_roostats
3/// \notebook
4/// Standard tutorial macro for performing an inverted hypothesis test for computing an interval
5///
6/// This macro will perform a scan of the p-values for computing the interval or limit
7///
8/// Usage:
9///
10/// ~~~{.cpp}
11/// root>.L StandardHypoTestInvDemo.C
12/// root> StandardHypoTestInvDemo("fileName","workspace name","S+B modelconfig name","B model name","data set
13/// name",calculator type, test statistic type, use CLS,
14/// number of points, xmin, xmax, number of toys, use number counting)
15///
16/// type = 0 Freq calculator
17/// type = 1 Hybrid calculator
18/// type = 2 Asymptotic calculator
19/// type = 3 Asymptotic calculator using nominal Asimov data sets (not using fitted parameter values but nominal ones)
20///
21/// testStatType = 0 LEP
22/// = 1 Tevatron
23/// = 2 Profile Likelihood two sided
24/// = 3 Profile Likelihood one sided (i.e. = 0 if mu < mu_hat)
25/// = 4 Profile Likelihood signed ( pll = -pll if mu < mu_hat)
26/// = 5 Max Likelihood Estimate as test statistic
27/// = 6 Number of observed event as test statistic
28/// ~~~
29///
30/// \macro_image
31/// \macro_output
32/// \macro_code
33///
34/// \author Lorenzo Moneta
35
36#include "TFile.h"
37#include "RooWorkspace.h"
38#include "RooAbsPdf.h"
39#include "RooRealVar.h"
40#include "RooDataSet.h"
42#include "RooRandom.h"
43#include "TGraphErrors.h"
44#include "TGraphAsymmErrors.h"
45#include "TCanvas.h"
46#include "TLine.h"
47#include "TROOT.h"
48#include "TSystem.h"
49
55
62
66
67#include <cassert>
68
69using namespace RooFit;
70using namespace RooStats;
71using namespace std;
72
73// structure defining the options
74struct HypoTestInvOptions {
75
76 bool plotHypoTestResult = true; // plot test statistic result at each point
77 bool writeResult = true; // write HypoTestInverterResult in a file
78 TString resultFileName; // file with results (by default is built automatically using the workspace input file name)
79 bool optimize = true; // optimize evaluation of test statistic
80 bool useVectorStore = true; // convert data to use new roofit data store
81 bool generateBinned = false; // generate binned data sets
82 bool noSystematics = false; // force all systematics to be off (i.e. set all nuisance parameters as constat
83 // to their nominal values)
84 double nToysRatio = 2; // ratio Ntoys S+b/ntoysB
85 double maxPOI = -1; // max value used of POI (in case of auto scan)
86 bool useProof = false; // use Proof Lite when using toys (for freq or hybrid)
87 int nworkers = 0; // number of worker for ProofLite (default use all available cores)
88 bool enableDetailedOutput =
89 false; // enable detailed output with all fit information for each toys (output will be written in result file)
90 bool rebuild = false; // re-do extra toys for computing expected limits and rebuild test stat
91 // distributions (N.B this requires much more CPU (factor is equivalent to nToyToRebuild)
92 int nToyToRebuild = 100; // number of toys used to rebuild
93 int rebuildParamValues = 0; // = 0 do a profile of all the parameters on the B (alt snapshot) before performing a
94 // rebuild operation (default)
95 // = 1 use initial workspace parameters with B snapshot values
96 // = 2 use all initial workspace parameters with B
97 // Otherwise the rebuild will be performed using
98 int initialFit = -1; // do a first fit to the model (-1 : default, 0 skip fit, 1 do always fit)
99 int randomSeed = -1; // random seed (if = -1: use default value, if = 0 always random )
100 // NOTE: Proof uses automatically a random seed
101
102 int nAsimovBins = 0; // number of bins in observables used for Asimov data sets (0 is the default and it is given by
103 // workspace, typically is 100)
104
105 bool reuseAltToys = false; // reuse same toys for alternate hypothesis (if set one gets more stable bands)
106 double confLevel = 0.95; // confidence level value
107
108 std::string minimizerType =
109 ""; // minimizer type (default is what is in ROOT::Math::MinimizerOptions::DefaultMinimizerType()
110 std::string massValue = ""; // extra string to tag output file of result
111 int printLevel = 0; // print level for debugging PL test statistics and calculators
112
113 bool useNLLOffset = false; // use NLL offset when fitting (this increase stability of fits)
114};
115
116HypoTestInvOptions optHTInv;
117
118// internal class to run the inverter and more
119
120namespace RooStats {
121
122class HypoTestInvTool {
123
124public:
125 HypoTestInvTool();
126 ~HypoTestInvTool(){};
127
128 HypoTestInverterResult *RunInverter(RooWorkspace *w, const char *modelSBName, const char *modelBName,
129 const char *dataName, int type, int testStatType, bool useCLs, int npoints,
130 double poimin, double poimax, int ntoys, bool useNumberCounting = false,
131 const char *nuisPriorName = 0);
132
133 void AnalyzeResult(HypoTestInverterResult *r, int calculatorType, int testStatType, bool useCLs, int npoints,
134 const char *fileNameBase = 0);
135
136 void SetParameter(const char *name, const char *value);
137 void SetParameter(const char *name, bool value);
138 void SetParameter(const char *name, int value);
139 void SetParameter(const char *name, double value);
140
141private:
142 bool mPlotHypoTestResult;
143 bool mWriteResult;
144 bool mOptimize;
145 bool mUseVectorStore;
146 bool mGenerateBinned;
147 bool mUseProof;
148 bool mRebuild;
149 bool mReuseAltToys;
150 bool mEnableDetOutput;
151 int mNWorkers;
152 int mNToyToRebuild;
153 int mRebuildParamValues;
154 int mPrintLevel;
155 int mInitialFit;
156 int mRandomSeed;
157 double mNToysRatio;
158 double mMaxPoi;
159 int mAsimovBins;
160 std::string mMassValue;
161 std::string
162 mMinimizerType; // minimizer type (default is what is in ROOT::Math::MinimizerOptions::DefaultMinimizerType()
163 TString mResultFileName;
164};
165
166} // end namespace RooStats
167
168RooStats::HypoTestInvTool::HypoTestInvTool()
169 : mPlotHypoTestResult(true), mWriteResult(false), mOptimize(true), mUseVectorStore(true), mGenerateBinned(false),
170 mUseProof(false), mEnableDetOutput(false), mRebuild(false), mReuseAltToys(false), mNWorkers(4),
171 mNToyToRebuild(100), mRebuildParamValues(0), mPrintLevel(0), mInitialFit(-1), mRandomSeed(-1), mNToysRatio(2),
172 mMaxPoi(-1), mAsimovBins(0), mMassValue(""), mMinimizerType(""), mResultFileName()
173{
174}
175
176void RooStats::HypoTestInvTool::SetParameter(const char *name, bool value)
177{
178 //
179 // set boolean parameters
180 //
181
182 std::string s_name(name);
183
184 if (s_name.find("PlotHypoTestResult") != std::string::npos)
185 mPlotHypoTestResult = value;
186 if (s_name.find("WriteResult") != std::string::npos)
187 mWriteResult = value;
188 if (s_name.find("Optimize") != std::string::npos)
189 mOptimize = value;
190 if (s_name.find("UseVectorStore") != std::string::npos)
191 mUseVectorStore = value;
192 if (s_name.find("GenerateBinned") != std::string::npos)
193 mGenerateBinned = value;
194 if (s_name.find("UseProof") != std::string::npos)
195 mUseProof = value;
196 if (s_name.find("EnableDetailedOutput") != std::string::npos)
197 mEnableDetOutput = value;
198 if (s_name.find("Rebuild") != std::string::npos)
199 mRebuild = value;
200 if (s_name.find("ReuseAltToys") != std::string::npos)
201 mReuseAltToys = value;
202
203 return;
204}
205
206void RooStats::HypoTestInvTool::SetParameter(const char *name, int value)
207{
208 //
209 // set integer parameters
210 //
211
212 std::string s_name(name);
213
214 if (s_name.find("NWorkers") != std::string::npos)
215 mNWorkers = value;
216 if (s_name.find("NToyToRebuild") != std::string::npos)
217 mNToyToRebuild = value;
218 if (s_name.find("RebuildParamValues") != std::string::npos)
219 mRebuildParamValues = value;
220 if (s_name.find("PrintLevel") != std::string::npos)
221 mPrintLevel = value;
222 if (s_name.find("InitialFit") != std::string::npos)
223 mInitialFit = value;
224 if (s_name.find("RandomSeed") != std::string::npos)
225 mRandomSeed = value;
226 if (s_name.find("AsimovBins") != std::string::npos)
227 mAsimovBins = value;
228
229 return;
230}
231
232void RooStats::HypoTestInvTool::SetParameter(const char *name, double value)
233{
234 //
235 // set double precision parameters
236 //
237
238 std::string s_name(name);
239
240 if (s_name.find("NToysRatio") != std::string::npos)
241 mNToysRatio = value;
242 if (s_name.find("MaxPOI") != std::string::npos)
243 mMaxPoi = value;
244
245 return;
246}
247
248void RooStats::HypoTestInvTool::SetParameter(const char *name, const char *value)
249{
250 //
251 // set string parameters
252 //
253
254 std::string s_name(name);
255
256 if (s_name.find("MassValue") != std::string::npos)
257 mMassValue.assign(value);
258 if (s_name.find("MinimizerType") != std::string::npos)
259 mMinimizerType.assign(value);
260 if (s_name.find("ResultFileName") != std::string::npos)
261 mResultFileName = value;
262
263 return;
264}
265
266void StandardHypoTestInvDemo(const char *infile = 0, const char *wsName = "combined",
267 const char *modelSBName = "ModelConfig", const char *modelBName = "",
268 const char *dataName = "obsData", int calculatorType = 0, int testStatType = 0,
269 bool useCLs = true, int npoints = 6, double poimin = 0, double poimax = 5,
270 int ntoys = 1000, bool useNumberCounting = false, const char *nuisPriorName = 0)
271{
272 /*
273
274 Other Parameter to pass in tutorial
275 apart from standard for filename, ws, modelconfig and data
276
277 type = 0 Freq calculator
278 type = 1 Hybrid calculator
279 type = 2 Asymptotic calculator
280 type = 3 Asymptotic calculator using nominal Asimov data sets (not using fitted parameter values but nominal ones)
281
282 testStatType = 0 LEP
283 = 1 Tevatron
284 = 2 Profile Likelihood
285 = 3 Profile Likelihood one sided (i.e. = 0 if mu < mu_hat)
286 = 4 Profiel Likelihood signed ( pll = -pll if mu < mu_hat)
287 = 5 Max Likelihood Estimate as test statistic
288 = 6 Number of observed event as test statistic
289
290 useCLs scan for CLs (otherwise for CLs+b)
291
292 npoints: number of points to scan , for autoscan set npoints = -1
293
294 poimin,poimax: min/max value to scan in case of fixed scans
295 (if min > max, try to find automatically)
296
297 ntoys: number of toys to use
298
299 useNumberCounting: set to true when using number counting events
300
301 nuisPriorName: name of prior for the nuisance. This is often expressed as constraint term in the global model
302 It is needed only when using the HybridCalculator (type=1)
303 If not given by default the prior pdf from ModelConfig is used.
304
305 extra options are available as global parameters of the macro. They major ones are:
306
307 plotHypoTestResult plot result of tests at each point (TS distributions) (default is true)
308 useProof use Proof (default is true)
309 writeResult write result of scan (default is true)
310 rebuild rebuild scan for expected limits (require extra toys) (default is false)
311 generateBinned generate binned data sets for toys (default is false) - be careful not to activate with
312 a too large (>=3) number of observables
313 nToyRatio ratio of S+B/B toys (default is 2)
314
315
316 */
317
318 TString filename(infile);
319 if (filename.IsNull()) {
320 filename = "results/example_combined_GaussExample_model.root";
321 bool fileExist = !gSystem->AccessPathName(filename); // note opposite return code
322 // if file does not exists generate with histfactory
323 if (!fileExist) {
324#ifdef _WIN32
325 cout << "HistFactory file cannot be generated on Windows - exit" << endl;
326 return;
327#endif
328 // Normally this would be run on the command line
329 cout << "will run standard hist2workspace example" << endl;
330 gROOT->ProcessLine(".! prepareHistFactory .");
331 gROOT->ProcessLine(".! hist2workspace config/example.xml");
332 cout << "\n\n---------------------" << endl;
333 cout << "Done creating example input" << endl;
334 cout << "---------------------\n\n" << endl;
335 }
336
337 } else
338 filename = infile;
339
340 // Try to open the file
341 TFile *file = TFile::Open(filename);
342
343 // if input file was specified byt not found, quit
344 if (!file) {
345 cout << "StandardRooStatsDemoMacro: Input file " << filename << " is not found" << endl;
346 return;
347 }
348
349 HypoTestInvTool calc;
350
351 // set parameters
352 calc.SetParameter("PlotHypoTestResult", optHTInv.plotHypoTestResult);
353 calc.SetParameter("WriteResult", optHTInv.writeResult);
354 calc.SetParameter("Optimize", optHTInv.optimize);
355 calc.SetParameter("UseVectorStore", optHTInv.useVectorStore);
356 calc.SetParameter("GenerateBinned", optHTInv.generateBinned);
357 calc.SetParameter("NToysRatio", optHTInv.nToysRatio);
358 calc.SetParameter("MaxPOI", optHTInv.maxPOI);
359 calc.SetParameter("UseProof", optHTInv.useProof);
360 calc.SetParameter("EnableDetailedOutput", optHTInv.enableDetailedOutput);
361 calc.SetParameter("NWorkers", optHTInv.nworkers);
362 calc.SetParameter("Rebuild", optHTInv.rebuild);
363 calc.SetParameter("ReuseAltToys", optHTInv.reuseAltToys);
364 calc.SetParameter("NToyToRebuild", optHTInv.nToyToRebuild);
365 calc.SetParameter("RebuildParamValues", optHTInv.rebuildParamValues);
366 calc.SetParameter("MassValue", optHTInv.massValue.c_str());
367 calc.SetParameter("MinimizerType", optHTInv.minimizerType.c_str());
368 calc.SetParameter("PrintLevel", optHTInv.printLevel);
369 calc.SetParameter("InitialFit", optHTInv.initialFit);
370 calc.SetParameter("ResultFileName", optHTInv.resultFileName);
371 calc.SetParameter("RandomSeed", optHTInv.randomSeed);
372 calc.SetParameter("AsimovBins", optHTInv.nAsimovBins);
373
374 // enable offset for all roostats
375 if (optHTInv.useNLLOffset)
377
378 RooWorkspace *w = dynamic_cast<RooWorkspace *>(file->Get(wsName));
380 std::cout << w << "\t" << filename << std::endl;
381 if (w != NULL) {
382 r = calc.RunInverter(w, modelSBName, modelBName, dataName, calculatorType, testStatType, useCLs, npoints, poimin,
383 poimax, ntoys, useNumberCounting, nuisPriorName);
384 if (!r) {
385 std::cerr << "Error running the HypoTestInverter - Exit " << std::endl;
386 return;
387 }
388 } else {
389 // case workspace is not present look for the inverter result
390 std::cout << "Reading an HypoTestInverterResult with name " << wsName << " from file " << filename << std::endl;
391 r = dynamic_cast<HypoTestInverterResult *>(file->Get(wsName)); //
392 if (!r) {
393 std::cerr << "File " << filename << " does not contain a workspace or an HypoTestInverterResult - Exit "
394 << std::endl;
395 file->ls();
396 return;
397 }
398 }
399
400 calc.AnalyzeResult(r, calculatorType, testStatType, useCLs, npoints, infile);
401
402 return;
403}
404
405void RooStats::HypoTestInvTool::AnalyzeResult(HypoTestInverterResult *r, int calculatorType, int testStatType,
406 bool useCLs, int npoints, const char *fileNameBase)
407{
408
409 // analyze result produced by the inverter, optionally save it in a file
410
411 double lowerLimit = 0;
412 double llError = 0;
413#if defined ROOT_SVN_VERSION && ROOT_SVN_VERSION >= 44126
414 if (r->IsTwoSided()) {
415 lowerLimit = r->LowerLimit();
416 llError = r->LowerLimitEstimatedError();
417 }
418#else
419 lowerLimit = r->LowerLimit();
420 llError = r->LowerLimitEstimatedError();
421#endif
422
423 double upperLimit = r->UpperLimit();
424 double ulError = r->UpperLimitEstimatedError();
425
426 // std::cout << "DEBUG : [ " << lowerLimit << " , " << upperLimit << " ] " << std::endl;
427
428 if (lowerLimit < upperLimit * (1. - 1.E-4) && lowerLimit != 0)
429 std::cout << "The computed lower limit is: " << lowerLimit << " +/- " << llError << std::endl;
430 std::cout << "The computed upper limit is: " << upperLimit << " +/- " << ulError << std::endl;
431
432 // compute expected limit
433 std::cout << "Expected upper limits, using the B (alternate) model : " << std::endl;
434 std::cout << " expected limit (median) " << r->GetExpectedUpperLimit(0) << std::endl;
435 std::cout << " expected limit (-1 sig) " << r->GetExpectedUpperLimit(-1) << std::endl;
436 std::cout << " expected limit (+1 sig) " << r->GetExpectedUpperLimit(1) << std::endl;
437 std::cout << " expected limit (-2 sig) " << r->GetExpectedUpperLimit(-2) << std::endl;
438 std::cout << " expected limit (+2 sig) " << r->GetExpectedUpperLimit(2) << std::endl;
439
440 // detailed output
441 if (mEnableDetOutput) {
442 mWriteResult = true;
443 Info("StandardHypoTestInvDemo", "detailed output will be written in output result file");
444 }
445
446 // write result in a file
447 if (r != NULL && mWriteResult) {
448
449 // write to a file the results
450 const char *calcType = (calculatorType == 0) ? "Freq" : (calculatorType == 1) ? "Hybr" : "Asym";
451 const char *limitType = (useCLs) ? "CLs" : "Cls+b";
452 const char *scanType = (npoints < 0) ? "auto" : "grid";
453 if (mResultFileName.IsNull()) {
454 mResultFileName = TString::Format("%s_%s_%s_ts%d_", calcType, limitType, scanType, testStatType);
455 // strip the / from the filename
456 if (mMassValue.size() > 0) {
457 mResultFileName += mMassValue.c_str();
458 mResultFileName += "_";
459 }
460
461 TString name = fileNameBase;
462 name.Replace(0, name.Last('/') + 1, "");
463 mResultFileName += name;
464 }
465
466 // get (if existing) rebuilt UL distribution
467 TString uldistFile = "RULDist.root";
468 TObject *ulDist = 0;
469 bool existULDist = !gSystem->AccessPathName(uldistFile);
470 if (existULDist) {
471 TFile *fileULDist = TFile::Open(uldistFile);
472 if (fileULDist)
473 ulDist = fileULDist->Get("RULDist");
474 }
475
476 TFile *fileOut = new TFile(mResultFileName, "RECREATE");
477 r->Write();
478 if (ulDist)
479 ulDist->Write();
480 Info("StandardHypoTestInvDemo", "HypoTestInverterResult has been written in the file %s", mResultFileName.Data());
481
482 fileOut->Close();
483 }
484
485 // plot the result ( p values vs scan points)
486 std::string typeName = "";
487 if (calculatorType == 0)
488 typeName = "Frequentist";
489 if (calculatorType == 1)
490 typeName = "Hybrid";
491 else if (calculatorType == 2 || calculatorType == 3) {
492 typeName = "Asymptotic";
493 mPlotHypoTestResult = false;
494 }
495
496 const char *resultName = r->GetName();
497 TString plotTitle = TString::Format("%s CL Scan for workspace %s", typeName.c_str(), resultName);
498 HypoTestInverterPlot *plot = new HypoTestInverterPlot("HTI_Result_Plot", plotTitle, r);
499
500 // plot in a new canvas with style
501 TString c1Name = TString::Format("%s_Scan", typeName.c_str());
502 TCanvas *c1 = new TCanvas(c1Name);
503 c1->SetLogy(false);
504
505 plot->Draw("CLb 2CL"); // plot all and Clb
506
507 // if (useCLs)
508 // plot->Draw("CLb 2CL"); // plot all and Clb
509 // else
510 // plot->Draw(""); // plot all and Clb
511
512 const int nEntries = r->ArraySize();
513
514 // plot test statistics distributions for the two hypothesis
515 if (mPlotHypoTestResult) {
516 TCanvas *c2 = new TCanvas("c2");
517 if (nEntries > 1) {
518 int ny = TMath::CeilNint(TMath::Sqrt(nEntries));
519 int nx = TMath::CeilNint(double(nEntries) / ny);
520 c2->Divide(nx, ny);
521 }
522 for (int i = 0; i < nEntries; i++) {
523 if (nEntries > 1)
524 c2->cd(i + 1);
525 SamplingDistPlot *pl = plot->MakeTestStatPlot(i);
526 pl->SetLogYaxis(true);
527 pl->Draw();
528 }
529 }
530 gPad = c1;
531}
532
533// internal routine to run the inverter
534HypoTestInverterResult *RooStats::HypoTestInvTool::RunInverter(RooWorkspace *w, const char *modelSBName,
535 const char *modelBName, const char *dataName, int type,
536 int testStatType, bool useCLs, int npoints,
537 double poimin, double poimax, int ntoys,
538 bool useNumberCounting, const char *nuisPriorName)
539{
540
541 std::cout << "Running HypoTestInverter on the workspace " << w->GetName() << std::endl;
542
543 w->Print();
544
545 RooAbsData *data = w->data(dataName);
546 if (!data) {
547 Error("StandardHypoTestDemo", "Not existing data %s", dataName);
548 return 0;
549 } else
550 std::cout << "Using data set " << dataName << std::endl;
551
552 if (mUseVectorStore) {
554 data->convertToVectorStore();
555 }
556
557 // get models from WS
558 // get the modelConfig out of the file
559 ModelConfig *bModel = (ModelConfig *)w->obj(modelBName);
560 ModelConfig *sbModel = (ModelConfig *)w->obj(modelSBName);
561
562 if (!sbModel) {
563 Error("StandardHypoTestDemo", "Not existing ModelConfig %s", modelSBName);
564 return 0;
565 }
566 // check the model
567 if (!sbModel->GetPdf()) {
568 Error("StandardHypoTestDemo", "Model %s has no pdf ", modelSBName);
569 return 0;
570 }
571 if (!sbModel->GetParametersOfInterest()) {
572 Error("StandardHypoTestDemo", "Model %s has no poi ", modelSBName);
573 return 0;
574 }
575 if (!sbModel->GetObservables()) {
576 Error("StandardHypoTestInvDemo", "Model %s has no observables ", modelSBName);
577 return 0;
578 }
579 if (!sbModel->GetSnapshot()) {
580 Info("StandardHypoTestInvDemo", "Model %s has no snapshot - make one using model poi", modelSBName);
581 sbModel->SetSnapshot(*sbModel->GetParametersOfInterest());
582 }
583
584 // case of no systematics
585 // remove nuisance parameters from model
586 if (optHTInv.noSystematics) {
587 const RooArgSet *nuisPar = sbModel->GetNuisanceParameters();
588 if (nuisPar && nuisPar->getSize() > 0) {
589 std::cout << "StandardHypoTestInvDemo"
590 << " - Switch off all systematics by setting them constant to their initial values" << std::endl;
591 RooStats::SetAllConstant(*nuisPar);
592 }
593 if (bModel) {
594 const RooArgSet *bnuisPar = bModel->GetNuisanceParameters();
595 if (bnuisPar)
596 RooStats::SetAllConstant(*bnuisPar);
597 }
598 }
599
600 if (!bModel || bModel == sbModel) {
601 Info("StandardHypoTestInvDemo", "The background model %s does not exist", modelBName);
602 Info("StandardHypoTestInvDemo", "Copy it from ModelConfig %s and set POI to zero", modelSBName);
603 bModel = (ModelConfig *)sbModel->Clone();
604 bModel->SetName(TString(modelSBName) + TString("_with_poi_0"));
605 RooRealVar *var = dynamic_cast<RooRealVar *>(bModel->GetParametersOfInterest()->first());
606 if (!var)
607 return 0;
608 double oldval = var->getVal();
609 var->setVal(0);
610 bModel->SetSnapshot(RooArgSet(*var));
611 var->setVal(oldval);
612 } else {
613 if (!bModel->GetSnapshot()) {
614 Info("StandardHypoTestInvDemo", "Model %s has no snapshot - make one using model poi and 0 values ",
615 modelBName);
616 RooRealVar *var = dynamic_cast<RooRealVar *>(bModel->GetParametersOfInterest()->first());
617 if (var) {
618 double oldval = var->getVal();
619 var->setVal(0);
620 bModel->SetSnapshot(RooArgSet(*var));
621 var->setVal(oldval);
622 } else {
623 Error("StandardHypoTestInvDemo", "Model %s has no valid poi", modelBName);
624 return 0;
625 }
626 }
627 }
628
629 // check model has global observables when there are nuisance pdf
630 // for the hybrid case the globals are not needed
631 if (type != 1) {
632 bool hasNuisParam = (sbModel->GetNuisanceParameters() && sbModel->GetNuisanceParameters()->getSize() > 0);
633 bool hasGlobalObs = (sbModel->GetGlobalObservables() && sbModel->GetGlobalObservables()->getSize() > 0);
634 if (hasNuisParam && !hasGlobalObs) {
635 // try to see if model has nuisance parameters first
636 RooAbsPdf *constrPdf = RooStats::MakeNuisancePdf(*sbModel, "nuisanceConstraintPdf_sbmodel");
637 if (constrPdf) {
638 Warning("StandardHypoTestInvDemo", "Model %s has nuisance parameters but no global observables associated",
639 sbModel->GetName());
640 Warning("StandardHypoTestInvDemo",
641 "\tThe effect of the nuisance parameters will not be treated correctly ");
642 }
643 }
644 }
645
646 // save all initial parameters of the model including the global observables
647 RooArgSet initialParameters;
648 RooArgSet *allParams = sbModel->GetPdf()->getParameters(*data);
649 allParams->snapshot(initialParameters);
650 delete allParams;
651
652 // run first a data fit
653
654 const RooArgSet *poiSet = sbModel->GetParametersOfInterest();
655 RooRealVar *poi = (RooRealVar *)poiSet->first();
656
657 std::cout << "StandardHypoTestInvDemo : POI initial value: " << poi->GetName() << " = " << poi->getVal()
658 << std::endl;
659
660 // fit the data first (need to use constraint )
661 TStopwatch tw;
662
663 bool doFit = mInitialFit;
664 if (testStatType == 0 && mInitialFit == -1)
665 doFit = false; // case of LEP test statistic
666 if (type == 3 && mInitialFit == -1)
667 doFit = false; // case of Asymptoticcalculator with nominal Asimov
668 double poihat = 0;
669
670 if (mMinimizerType.size() == 0)
672 else
674
675 Info("StandardHypoTestInvDemo", "Using %s as minimizer for computing the test statistic",
677
678 if (doFit) {
679
680 // do the fit : By doing a fit the POI snapshot (for S+B) is set to the fit value
681 // and the nuisance parameters nominal values will be set to the fit value.
682 // This is relevant when using LEP test statistics
683
684 Info("StandardHypoTestInvDemo", " Doing a first fit to the observed data ");
685 RooArgSet constrainParams;
686 if (sbModel->GetNuisanceParameters())
687 constrainParams.add(*sbModel->GetNuisanceParameters());
688 RooStats::RemoveConstantParameters(&constrainParams);
689 tw.Start();
690 RooFitResult *fitres = sbModel->GetPdf()->fitTo(
691 *data, InitialHesse(false), Hesse(false), Minimizer(mMinimizerType.c_str(), "Migrad"), Strategy(0),
692 PrintLevel(mPrintLevel), Constrain(constrainParams), Save(true), Offset(RooStats::IsNLLOffset()));
693 if (fitres->status() != 0) {
694 Warning("StandardHypoTestInvDemo",
695 "Fit to the model failed - try with strategy 1 and perform first an Hesse computation");
696 fitres = sbModel->GetPdf()->fitTo(
697 *data, InitialHesse(true), Hesse(false), Minimizer(mMinimizerType.c_str(), "Migrad"), Strategy(1),
698 PrintLevel(mPrintLevel + 1), Constrain(constrainParams), Save(true), Offset(RooStats::IsNLLOffset()));
699 }
700 if (fitres->status() != 0)
701 Warning("StandardHypoTestInvDemo", " Fit still failed - continue anyway.....");
702
703 poihat = poi->getVal();
704 std::cout << "StandardHypoTestInvDemo - Best Fit value : " << poi->GetName() << " = " << poihat << " +/- "
705 << poi->getError() << std::endl;
706 std::cout << "Time for fitting : ";
707 tw.Print();
708
709 // save best fit value in the poi snapshot
710 sbModel->SetSnapshot(*sbModel->GetParametersOfInterest());
711 std::cout << "StandardHypoTestInvo: snapshot of S+B Model " << sbModel->GetName()
712 << " is set to the best fit value" << std::endl;
713 }
714
715 // print a message in case of LEP test statistics because it affects result by doing or not doing a fit
716 if (testStatType == 0) {
717 if (!doFit)
718 Info("StandardHypoTestInvDemo", "Using LEP test statistic - an initial fit is not done and the TS will use "
719 "the nuisances at the model value");
720 else
721 Info("StandardHypoTestInvDemo", "Using LEP test statistic - an initial fit has been done and the TS will use "
722 "the nuisances at the best fit value");
723 }
724
725 // build test statistics and hypotest calculators for running the inverter
726
727 SimpleLikelihoodRatioTestStat slrts(*sbModel->GetPdf(), *bModel->GetPdf());
728
729 // null parameters must includes snapshot of poi plus the nuisance values
730 RooArgSet nullParams(*sbModel->GetSnapshot());
731 if (sbModel->GetNuisanceParameters())
732 nullParams.add(*sbModel->GetNuisanceParameters());
733 if (sbModel->GetSnapshot())
734 slrts.SetNullParameters(nullParams);
735 RooArgSet altParams(*bModel->GetSnapshot());
736 if (bModel->GetNuisanceParameters())
737 altParams.add(*bModel->GetNuisanceParameters());
738 if (bModel->GetSnapshot())
739 slrts.SetAltParameters(altParams);
740 if (mEnableDetOutput)
741 slrts.EnableDetailedOutput();
742
743 // ratio of profile likelihood - need to pass snapshot for the alt
744 RatioOfProfiledLikelihoodsTestStat ropl(*sbModel->GetPdf(), *bModel->GetPdf(), bModel->GetSnapshot());
745 ropl.SetSubtractMLE(false);
746 if (testStatType == 11)
747 ropl.SetSubtractMLE(true);
748 ropl.SetPrintLevel(mPrintLevel);
749 ropl.SetMinimizer(mMinimizerType.c_str());
750 if (mEnableDetOutput)
751 ropl.EnableDetailedOutput();
752
753 ProfileLikelihoodTestStat profll(*sbModel->GetPdf());
754 if (testStatType == 3)
755 profll.SetOneSided(true);
756 if (testStatType == 4)
757 profll.SetSigned(true);
758 profll.SetMinimizer(mMinimizerType.c_str());
759 profll.SetPrintLevel(mPrintLevel);
760 if (mEnableDetOutput)
761 profll.EnableDetailedOutput();
762
763 profll.SetReuseNLL(mOptimize);
764 slrts.SetReuseNLL(mOptimize);
765 ropl.SetReuseNLL(mOptimize);
766
767 if (mOptimize) {
768 profll.SetStrategy(0);
769 ropl.SetStrategy(0);
771 }
772
773 if (mMaxPoi > 0)
774 poi->setMax(mMaxPoi); // increase limit
775
776 MaxLikelihoodEstimateTestStat maxll(*sbModel->GetPdf(), *poi);
777 NumEventsTestStat nevtts;
778
779 AsymptoticCalculator::SetPrintLevel(mPrintLevel);
780
781 // create the HypoTest calculator class
783 if (type == 0)
784 hc = new FrequentistCalculator(*data, *bModel, *sbModel);
785 else if (type == 1)
786 hc = new HybridCalculator(*data, *bModel, *sbModel);
787 // else if (type == 2 ) hc = new AsymptoticCalculator(*data, *bModel, *sbModel, false, mAsimovBins);
788 // else if (type == 3 ) hc = new AsymptoticCalculator(*data, *bModel, *sbModel, true, mAsimovBins); // for using
789 // Asimov data generated with nominal values
790 else if (type == 2)
791 hc = new AsymptoticCalculator(*data, *bModel, *sbModel, false);
792 else if (type == 3)
793 hc = new AsymptoticCalculator(*data, *bModel, *sbModel,
794 true); // for using Asimov data generated with nominal values
795 else {
796 Error("StandardHypoTestInvDemo", "Invalid - calculator type = %d supported values are only :\n\t\t\t 0 "
797 "(Frequentist) , 1 (Hybrid) , 2 (Asymptotic) ",
798 type);
799 return 0;
800 }
801
802 // set the test statistic
803 TestStatistic *testStat = 0;
804 if (testStatType == 0)
805 testStat = &slrts;
806 if (testStatType == 1 || testStatType == 11)
807 testStat = &ropl;
808 if (testStatType == 2 || testStatType == 3 || testStatType == 4)
809 testStat = &profll;
810 if (testStatType == 5)
811 testStat = &maxll;
812 if (testStatType == 6)
813 testStat = &nevtts;
814
815 if (testStat == 0) {
816 Error("StandardHypoTestInvDemo", "Invalid - test statistic type = %d supported values are only :\n\t\t\t 0 (SLR) "
817 ", 1 (Tevatron) , 2 (PLR), 3 (PLR1), 4(MLE)",
818 testStatType);
819 return 0;
820 }
821
823 if (toymcs && (type == 0 || type == 1)) {
824 // look if pdf is number counting or extended
825 if (sbModel->GetPdf()->canBeExtended()) {
826 if (useNumberCounting)
827 Warning("StandardHypoTestInvDemo", "Pdf is extended: but number counting flag is set: ignore it ");
828 } else {
829 // for not extended pdf
830 if (!useNumberCounting) {
831 int nEvents = data->numEntries();
832 Info("StandardHypoTestInvDemo",
833 "Pdf is not extended: number of events to generate taken from observed data set is %d", nEvents);
834 toymcs->SetNEventsPerToy(nEvents);
835 } else {
836 Info("StandardHypoTestInvDemo", "using a number counting pdf");
837 toymcs->SetNEventsPerToy(1);
838 }
839 }
840
841 toymcs->SetTestStatistic(testStat);
842
843 if (data->isWeighted() && !mGenerateBinned) {
844 Info("StandardHypoTestInvDemo", "Data set is weighted, nentries = %d and sum of weights = %8.1f but toy "
845 "generation is unbinned - it would be faster to set mGenerateBinned to true\n",
846 data->numEntries(), data->sumEntries());
847 }
848 toymcs->SetGenerateBinned(mGenerateBinned);
849
850 toymcs->SetUseMultiGen(mOptimize);
851
852 if (mGenerateBinned && sbModel->GetObservables()->getSize() > 2) {
853 Warning("StandardHypoTestInvDemo", "generate binned is activated but the number of observable is %d. Too much "
854 "memory could be needed for allocating all the bins",
855 sbModel->GetObservables()->getSize());
856 }
857
858 // set the random seed if needed
859 if (mRandomSeed >= 0)
860 RooRandom::randomGenerator()->SetSeed(mRandomSeed);
861 }
862
863 // specify if need to re-use same toys
864 if (mReuseAltToys) {
865 hc->UseSameAltToys();
866 }
867
868 if (type == 1) {
869 HybridCalculator *hhc = dynamic_cast<HybridCalculator *>(hc);
870 assert(hhc);
871
872 hhc->SetToys(ntoys, ntoys / mNToysRatio); // can use less ntoys for b hypothesis
873
874 // remove global observables from ModelConfig (this is probably not needed anymore in 5.32)
877
878 // check for nuisance prior pdf in case of nuisance parameters
879 if (bModel->GetNuisanceParameters() || sbModel->GetNuisanceParameters()) {
880
881 // fix for using multigen (does not work in this case)
882 toymcs->SetUseMultiGen(false);
883 ToyMCSampler::SetAlwaysUseMultiGen(false);
884
885 RooAbsPdf *nuisPdf = 0;
886 if (nuisPriorName)
887 nuisPdf = w->pdf(nuisPriorName);
888 // use prior defined first in bModel (then in SbModel)
889 if (!nuisPdf) {
890 Info("StandardHypoTestInvDemo",
891 "No nuisance pdf given for the HybridCalculator - try to deduce pdf from the model");
892 if (bModel->GetPdf() && bModel->GetObservables())
893 nuisPdf = RooStats::MakeNuisancePdf(*bModel, "nuisancePdf_bmodel");
894 else
895 nuisPdf = RooStats::MakeNuisancePdf(*sbModel, "nuisancePdf_sbmodel");
896 }
897 if (!nuisPdf) {
898 if (bModel->GetPriorPdf()) {
899 nuisPdf = bModel->GetPriorPdf();
900 Info("StandardHypoTestInvDemo",
901 "No nuisance pdf given - try to use %s that is defined as a prior pdf in the B model",
902 nuisPdf->GetName());
903 } else {
904 Error("StandardHypoTestInvDemo", "Cannot run Hybrid calculator because no prior on the nuisance "
905 "parameter is specified or can be derived");
906 return 0;
907 }
908 }
909 assert(nuisPdf);
910 Info("StandardHypoTestInvDemo", "Using as nuisance Pdf ... ");
911 nuisPdf->Print();
912
913 const RooArgSet *nuisParams =
914 (bModel->GetNuisanceParameters()) ? bModel->GetNuisanceParameters() : sbModel->GetNuisanceParameters();
915 RooArgSet *np = nuisPdf->getObservables(*nuisParams);
916 if (np->getSize() == 0) {
917 Warning("StandardHypoTestInvDemo",
918 "Prior nuisance does not depend on nuisance parameters. They will be smeared in their full range");
919 }
920 delete np;
921
922 hhc->ForcePriorNuisanceAlt(*nuisPdf);
923 hhc->ForcePriorNuisanceNull(*nuisPdf);
924 }
925 } else if (type == 2 || type == 3) {
926 if (testStatType == 3)
927 ((AsymptoticCalculator *)hc)->SetOneSided(true);
928 if (testStatType != 2 && testStatType != 3)
929 Warning("StandardHypoTestInvDemo",
930 "Only the PL test statistic can be used with AsymptoticCalculator - use by default a two-sided PL");
931 } else if (type == 0) {
932 ((FrequentistCalculator *)hc)->SetToys(ntoys, ntoys / mNToysRatio);
933 // store also the fit information for each poi point used by calculator based on toys
934 if (mEnableDetOutput)
935 ((FrequentistCalculator *)hc)->StoreFitInfo(true);
936 } else if (type == 1) {
937 ((HybridCalculator *)hc)->SetToys(ntoys, ntoys / mNToysRatio);
938 // store also the fit information for each poi point used by calculator based on toys
939 // if (mEnableDetOutput) ((HybridCalculator*) hc)->StoreFitInfo(true);
940 }
941
942 // Get the result
944
945 HypoTestInverter calc(*hc);
946 calc.SetConfidenceLevel(optHTInv.confLevel);
947
948 calc.UseCLs(useCLs);
949 calc.SetVerbose(true);
950
951 // can speed up using proof-lite
952 if (mUseProof) {
953 ProofConfig pc(*w, mNWorkers, "", kFALSE);
954 toymcs->SetProofConfig(&pc); // enable proof
955 }
956
957 if (npoints > 0) {
958 if (poimin > poimax) {
959 // if no min/max given scan between MLE and +4 sigma
960 poimin = int(poihat);
961 poimax = int(poihat + 4 * poi->getError());
962 }
963 std::cout << "Doing a fixed scan in interval : " << poimin << " , " << poimax << std::endl;
964 calc.SetFixedScan(npoints, poimin, poimax);
965 } else {
966 // poi->setMax(10*int( (poihat+ 10 *poi->getError() )/10 ) );
967 std::cout << "Doing an automatic scan in interval : " << poi->getMin() << " , " << poi->getMax() << std::endl;
968 }
969
970 tw.Start();
971 HypoTestInverterResult *r = calc.GetInterval();
972 std::cout << "Time to perform limit scan \n";
973 tw.Print();
974
975 if (mRebuild) {
976
977 std::cout << "\n***************************************************************\n";
978 std::cout << "Rebuild the upper limit distribution by re-generating new set of pseudo-experiment and re-compute "
979 "for each of them a new upper limit\n\n";
980
981 allParams = sbModel->GetPdf()->getParameters(*data);
982
983 // define on which value of nuisance parameters to do the rebuild
984 // default is best fit value for bmodel snapshot
985
986 if (mRebuildParamValues != 0) {
987 // set all parameters to their initial workspace values
988 *allParams = initialParameters;
989 }
990 if (mRebuildParamValues == 0 || mRebuildParamValues == 1) {
991 RooArgSet constrainParams;
992 if (sbModel->GetNuisanceParameters())
993 constrainParams.add(*sbModel->GetNuisanceParameters());
994 RooStats::RemoveConstantParameters(&constrainParams);
995
996 const RooArgSet *poiModel = sbModel->GetParametersOfInterest();
997 bModel->LoadSnapshot();
998
999 // do a profile using the B model snapshot
1000 if (mRebuildParamValues == 0) {
1001
1002 RooStats::SetAllConstant(*poiModel, true);
1003
1004 sbModel->GetPdf()->fitTo(*data, InitialHesse(false), Hesse(false),
1005 Minimizer(mMinimizerType.c_str(), "Migrad"), Strategy(0), PrintLevel(mPrintLevel),
1006 Constrain(constrainParams), Offset(RooStats::IsNLLOffset()));
1007
1008 std::cout << "rebuild using fitted parameter value for B-model snapshot" << std::endl;
1009 constrainParams.Print("v");
1010
1011 RooStats::SetAllConstant(*poiModel, false);
1012 }
1013 }
1014 std::cout << "StandardHypoTestInvDemo: Initial parameters used for rebuilding: ";
1015 RooStats::PrintListContent(*allParams, std::cout);
1016 delete allParams;
1017
1018 calc.SetCloseProof(1);
1019 tw.Start();
1020 SamplingDistribution *limDist = calc.GetUpperLimitDistribution(true, mNToyToRebuild);
1021 std::cout << "Time to rebuild distributions " << std::endl;
1022 tw.Print();
1023
1024 if (limDist) {
1025 std::cout << "Expected limits after rebuild distribution " << std::endl;
1026 std::cout << "expected upper limit (median of limit distribution) " << limDist->InverseCDF(0.5) << std::endl;
1027 std::cout << "expected -1 sig limit (0.16% quantile of limit dist) "
1028 << limDist->InverseCDF(ROOT::Math::normal_cdf(-1)) << std::endl;
1029 std::cout << "expected +1 sig limit (0.84% quantile of limit dist) "
1030 << limDist->InverseCDF(ROOT::Math::normal_cdf(1)) << std::endl;
1031 std::cout << "expected -2 sig limit (.025% quantile of limit dist) "
1032 << limDist->InverseCDF(ROOT::Math::normal_cdf(-2)) << std::endl;
1033 std::cout << "expected +2 sig limit (.975% quantile of limit dist) "
1034 << limDist->InverseCDF(ROOT::Math::normal_cdf(2)) << std::endl;
1035
1036 // Plot the upper limit distribution
1037 SamplingDistPlot limPlot((mNToyToRebuild < 200) ? 50 : 100);
1038 limPlot.AddSamplingDistribution(limDist);
1039 limPlot.GetTH1F()->SetStats(true); // display statistics
1040 limPlot.SetLineColor(kBlue);
1041 new TCanvas("limPlot", "Upper Limit Distribution");
1042 limPlot.Draw();
1043
1044 /// save result in a file
1045 limDist->SetName("RULDist");
1046 TFile *fileOut = new TFile("RULDist.root", "RECREATE");
1047 limDist->Write();
1048 fileOut->Close();
1049
1050 // update r to a new updated result object containing the rebuilt expected p-values distributions
1051 // (it will not recompute the expected limit)
1052 if (r)
1053 delete r; // need to delete previous object since GetInterval will return a cloned copy
1054 r = calc.GetInterval();
1055
1056 } else
1057 std::cout << "ERROR : failed to re-build distributions " << std::endl;
1058 }
1059
1060 return r;
1061}
1062
1063void ReadResult(const char *fileName, const char *resultName = "", bool useCLs = true)
1064{
1065 // read a previous stored result from a file given the result name
1066
1067 StandardHypoTestInvDemo(fileName, resultName, "", "", "", 0, 0, useCLs);
1068}
1069
1070#ifdef USE_AS_MAIN
1071int main()
1072{
1073 StandardHypoTestInvDemo();
1074}
1075#endif
ROOT::R::TRInterface & r
Definition Object.C:4
const Bool_t kFALSE
Definition RtypesCore.h:92
@ kBlue
Definition Rtypes.h:66
void Info(const char *location, const char *msgfmt,...)
Use this function for informational messages.
Definition TError.cxx:220
void Error(const char *location, const char *msgfmt,...)
Use this function in case an error occurred.
Definition TError.cxx:187
void Warning(const char *location, const char *msgfmt,...)
Use this function in warning situations.
Definition TError.cxx:231
char name[80]
Definition TGX11.cxx:110
int type
Definition TGX11.cxx:121
#define gROOT
Definition TROOT.h:406
R__EXTERN TSystem * gSystem
Definition TSystem.h:559
#define gPad
static void SetDefaultMinimizer(const char *type, const char *algo=0)
static void SetDefaultStrategy(int strat)
static const std::string & DefaultMinimizerType()
RooArgSet * getObservables(const RooArgSet &set, Bool_t valueOnly=kTRUE) const
Given a set of possible observables, return the observables that this PDF depends on.
Definition RooAbsArg.h:313
virtual void Print(Option_t *options=0) const
Print the object to the defaultPrintStream().
Definition RooAbsArg.h:340
RooArgSet * getParameters(const RooAbsData *data, bool stripDisconnected=true) const
Create a list of leaf nodes in the arg tree starting with ourself as top node that don't match any of...
Int_t getSize() const
RooAbsArg * first() const
virtual void Print(Option_t *options=0) const
This method must be overridden when a class wants to print itself.
RooAbsData is the common abstract base class for binned and unbinned datasets.
Definition RooAbsData.h:49
static void setDefaultStorageType(StorageType s)
virtual Double_t sumEntries() const =0
Return effective number of entries in dataset, i.e., sum all weights.
virtual Bool_t isWeighted() const
Definition RooAbsData.h:126
void convertToVectorStore()
Convert tree-based storage to vector-based storage.
virtual Int_t numEntries() const
Return number of entries in dataset, i.e., count unweighted entries.
Bool_t canBeExtended() const
If true, PDF can provide extended likelihood term.
Definition RooAbsPdf.h:238
virtual RooFitResult * fitTo(RooAbsData &data, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none())
Fit PDF to given dataset.
virtual Double_t getMax(const char *name=0) const
Get maximum of currently defined range.
virtual Double_t getMin(const char *name=0) const
Get miniminum of currently defined range.
Double_t getVal(const RooArgSet *normalisationSet=nullptr) const
Evaluate object.
Definition RooAbsReal.h:91
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition RooArgSet.h:29
RooArgSet * snapshot(bool deepCopy=true) const
Use RooAbsCollection::snapshot(), but return as RooArgSet.
Definition RooArgSet.h:118
Bool_t add(const RooAbsArg &var, Bool_t silent=kFALSE) override
Add element to non-owning set.
RooFitResult is a container class to hold the input and output of a PDF fit to a dataset.
Int_t status() const
Return MINUIT status code.
static RooMsgService & instance()
Return reference to singleton instance.
StreamConfig & getStream(Int_t id)
static TRandom * randomGenerator()
Return a pointer to a singleton random-number generator implementation.
Definition RooRandom.cxx:53
RooRealVar represents a variable that can be changed from the outside.
Definition RooRealVar.h:39
void setMax(const char *name, Double_t value)
Set maximum of name range to given value.
Double_t getError() const
Definition RooRealVar.h:60
virtual void setVal(Double_t value)
Set value of variable to 'value'.
Hypothesis Test Calculator based on the asymptotic formulae for the profile likelihood ratio.
Does a frequentist hypothesis test.
Same purpose as HybridCalculatorOriginal, but different implementation.
virtual void ForcePriorNuisanceNull(RooAbsPdf &priorNuisance)
Override the distribution used for marginalizing nuisance parameters that is inferred from ModelConfi...
virtual void ForcePriorNuisanceAlt(RooAbsPdf &priorNuisance)
void SetToys(int toysNull, int toysAlt)
set number of toys
Common base class for the Hypothesis Test Calculators.
TestStatSampler * GetTestStatSampler(void) const
Returns instance of TestStatSampler.
void UseSameAltToys()
Set this for re-using always the same toys for alternate hypothesis in case of calls at different nul...
Class to plot a HypoTestInverterResult, the output of the HypoTestInverter calculator.
void Draw(Option_t *opt="")
Draw the scan result in the current canvas Possible options: "" (default): draw observed + expected w...
SamplingDistPlot * MakeTestStatPlot(int index, int type=0, int nbins=100)
Plot the test statistic distributions.
HypoTestInverterResult class holds the array of hypothesis test results and compute a confidence inte...
A class for performing a hypothesis test inversion by scanning the hypothesis test results of a HypoT...
MaxLikelihoodEstimateTestStat: TestStatistic that returns maximum likelihood estimate of a specified ...
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
Definition ModelConfig.h:30
virtual void SetSnapshot(const RooArgSet &set)
Set parameter values for a particular hypothesis if using a common PDF by saving a snapshot in the wo...
virtual ModelConfig * Clone(const char *name="") const override
clone
Definition ModelConfig.h:54
const RooArgSet * GetGlobalObservables() const
get RooArgSet for global observables (return NULL if not existing)
const RooArgSet * GetParametersOfInterest() const
get RooArgSet containing the parameter of interest (return NULL if not existing)
const RooArgSet * GetNuisanceParameters() const
get RooArgSet containing the nuisance parameters (return NULL if not existing)
virtual void SetGlobalObservables(const RooArgSet &set)
Specify the global observables.
void LoadSnapshot() const
load the snapshot from ws if it exists
const RooArgSet * GetObservables() const
get RooArgSet for observables (return NULL if not existing)
const RooArgSet * GetSnapshot() const
get RooArgSet for parameters for a particular hypothesis (return NULL if not existing)
RooAbsPdf * GetPdf() const
get model PDF (return NULL if pdf has not been specified or does not exist)
RooAbsPdf * GetPriorPdf() const
get parameters prior pdf (return NULL if not existing)
NumEventsTestStat is a simple implementation of the TestStatistic interface used for simple number co...
ProfileLikelihoodTestStat is an implementation of the TestStatistic interface that calculates the pro...
Holds configuration options for proof and proof-lite.
Definition ProofConfig.h:46
TestStatistic that returns the ratio of profiled likelihoods.
This class provides simple and straightforward utilities to plot SamplingDistribution objects.
Double_t AddSamplingDistribution(const SamplingDistribution *samplingDist, Option_t *drawOptions="NORMALIZE HIST")
adds the sampling distribution and returns the scale factor
void SetLogYaxis(Bool_t ly)
changes plot to log scale on y axis
void Draw(Option_t *options=0)
Draw this plot and all of the elements it contains.
TH1F * GetTH1F(const SamplingDistribution *samplDist=NULL)
Returns the TH1F associated with the give SamplingDistribution.
void SetLineColor(Color_t color, const SamplingDistribution *samplDist=0)
Sets line color for given sampling distribution and fill color for the associated shaded TH1F.
This class simply holds a sampling distribution of some test statistic.
Double_t InverseCDF(Double_t pvalue)
get the inverse of the Cumulative distribution function
TestStatistic class that returns -log(L[null] / L[alt]) where L is the likelihood.
TestStatistic is an interface class to provide a facility for construction test statistics distributi...
ToyMCSampler is an implementation of the TestStatSampler interface.
void SetProofConfig(ProofConfig *pc=NULL)
virtual void SetTestStatistic(TestStatistic *testStatistic, unsigned int i)
void SetGenerateBinned(bool binned=true)
void SetUseMultiGen(Bool_t flag)
virtual void SetNEventsPerToy(const Int_t nevents)
Forces the generation of exactly n events even for extended PDFs.
The RooWorkspace is a persistable container for RooFit projects.
RooAbsData * data(const char *name) const
Retrieve dataset (binned or unbinned) with given name. A null pointer is returned if not found.
void Print(Option_t *opts=0) const
Print contents of the workspace.
TObject * obj(const char *name) const
Return any type of object (RooAbsArg, RooAbsData or generic object) with given name)
RooAbsPdf * pdf(const char *name) const
Retrieve p.d.f (RooAbsPdf) with given name. A null pointer is returned if not found.
The Canvas class.
Definition TCanvas.h:23
TObject * Get(const char *namecycle) override
Return pointer to object identified by namecycle.
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
Definition TFile.h:54
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
Definition TFile.cxx:3997
void Close(Option_t *option="") override
Close a file.
Definition TFile.cxx:879
virtual void SetStats(Bool_t stats=kTRUE)
Set statistics option on/off.
Definition TH1.cxx:8830
virtual void SetName(const char *name)
Set the name of the TNamed.
Definition TNamed.cxx:140
virtual const char * GetName() const
Returns name of object.
Definition TNamed.h:47
Mother of all ROOT objects.
Definition TObject.h:37
virtual Int_t Write(const char *name=0, Int_t option=0, Int_t bufsize=0)
Write this object to the current directory.
Definition TObject.cxx:798
virtual const char * GetName() const
Returns name of object.
Definition TObject.cxx:359
virtual void SetSeed(ULong_t seed=0)
Set the random generator seed.
Definition TRandom.cxx:608
Stopwatch class.
Definition TStopwatch.h:28
void Start(Bool_t reset=kTRUE)
Start the stopwatch.
void Print(Option_t *option="") const
Print the real and cpu time passed between the start and stop events.
Basic string class.
Definition TString.h:136
TString & Replace(Ssiz_t pos, Ssiz_t n, const char *s)
Definition TString.h:682
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
Definition TString.cxx:2331
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
Definition TSystem.cxx:1294
int main()
RooCmdArg Constrain(const RooArgSet &params)
RooCmdArg Strategy(Int_t code)
RooCmdArg Hesse(Bool_t flag=kTRUE)
RooCmdArg InitialHesse(Bool_t flag=kTRUE)
RooCmdArg Save(Bool_t flag=kTRUE)
RooCmdArg PrintLevel(Int_t code)
RooCmdArg Offset(Bool_t flag=kTRUE)
RooCmdArg Minimizer(const char *type, const char *alg=0)
double normal_cdf(double x, double sigma=1, double x0=0)
Cumulative distribution function of the normal (Gaussian) distribution (lower tail).
return c1
Definition legend1.C:41
return c2
Definition legend2.C:14
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
@ NumIntegration
Namespace for the RooStats classes.
Definition Asimov.h:19
bool SetAllConstant(const RooAbsCollection &coll, bool constant=true)
void RemoveConstantParameters(RooArgSet *set)
RooAbsPdf * MakeNuisancePdf(RooAbsPdf &pdf, const RooArgSet &observables, const char *name)
void UseNLLOffset(bool on)
Use an offset in NLL calculations.
bool IsNLLOffset()
Test of RooStats should by default offset NLL calculations.
void PrintListContent(const RooArgList &l, std::ostream &os=std::cout)
Double_t Sqrt(Double_t x)
Definition TMath.h:691
Int_t CeilNint(Double_t x)
Definition TMath.h:699
Definition file.py:1
void removeTopic(RooFit::MsgTopic oldTopic)