62 fInterpolateLowerLimit(true),
63 fInterpolateUpperLimit(true),
64 fFittedLowerLimit(false),
65 fFittedUpperLimit(false),
66 fInterpolOption(kLinear),
69 fCLsCleanupThreshold(0.005)
83 fUseCLs(other.fUseCLs),
84 fIsTwoSided(other.fIsTwoSided),
85 fInterpolateLowerLimit(other.fInterpolateLowerLimit),
86 fInterpolateUpperLimit(other.fInterpolateUpperLimit),
87 fFittedLowerLimit(other.fFittedLowerLimit),
88 fFittedUpperLimit(other.fFittedUpperLimit),
89 fInterpolOption(other.fInterpolOption),
90 fLowerLimitError(other.fLowerLimitError),
91 fUpperLimitError(other.fUpperLimitError),
92 fCLsCleanupThreshold(other.fCLsCleanupThreshold)
99 for (
int i = 0; i < nOther; ++i)
135 for (
int i=0; i < nOther; ++i) {
158 fInterpolateLowerLimit(true),
159 fInterpolateUpperLimit(true),
160 fFittedLowerLimit(false),
161 fFittedUpperLimit(false),
162 fInterpolOption(kLinear),
163 fLowerLimitError(-1),
164 fUpperLimitError(-1),
165 fCLsCleanupThreshold(0.005)
216 bool resultIsAsymptotic(
false);
220 if ( !
r->GetNullDistribution() && !
r->GetAltDistribution() ) {
221 resultIsAsymptotic =
true;
225 int nPointsRemoved(0);
227 double CLsobsprev(1.0);
230 const double x = *itr;
240 oocoutE(
this,
Eval) <<
"HypoTestInverterResult::ExclusionCleanup - invalid size of sampling distribution" << std::endl;
247 if (resultIsAsymptotic) {
249 double dsig = 2.*maxSigma / (values.size() -1) ;
262 double * z =
const_cast<double *
>( &values[0] );
268 const double CLsobs =
CLs(i);
272 bool removeThisPoint(
false);
275 if (resultIsAsymptotic && i>=1 && CLsobs>CLsobsprev) {
276 removeThisPoint =
true;
277 }
else if (CLsobs >= 0.) {
282 removeThisPoint |= i>=1 && CLsobs >= 0.9999;
288 removeThisPoint |= CLsobs < 0.;
291 if (removeThisPoint) {
307 return nPointsRemoved;
325 if (nOther == 0)
return true;
333 oocoutI(
this,
Eval) <<
"HypoTestInverterResult::Add - merging result from " << otherResult.
GetName()
334 <<
" in " <<
GetName() << std::endl;
339 if (addExpPValues || mergeExpPValues)
340 oocoutI(
this,
Eval) <<
"HypoTestInverterResult::Add - merging also the expected p-values from pseudo-data" << std::endl;
347 for (
int i = 0; i < nOther; ++i)
354 for (
int i = 0; i < nOther; ++i) {
355 double otherVal = otherResult.
fXValues[i];
357 if (otherHTR == 0)
continue;
358 bool sameXFound =
false;
359 for (
int j = 0; j < nThis; ++j) {
366 thisHTR->
Append(otherHTR);
368 if (mergeExpPValues) {
373 if (thisNToys != otherNToys )
374 oocoutW(
this,
Eval) <<
"HypoTestInverterResult::Add expected p values have been generated with different toys " << thisNToys <<
" , " << otherNToys << std::endl;
393 oocoutI(
this,
Eval) <<
"HypoTestInverterResult::Add - new number of points is " <<
fXValues.size()
396 oocoutI(
this,
Eval) <<
"HypoTestInverterResult::Add - new toys/point is "
418 if (!
r)
return false;
453 return result->CLs();
455 return result->CLsplusb();
470 return result->CLsError();
472 return result->CLsplusbError();
485 return result->CLb();
497 return result->CLsplusb();
509 return result->CLs();
521 return result->CLbError();
533 return result->CLsplusbError();
545 return result->CLsError();
568 const double tol = 1.E-12;
587 std::cout <<
"using graph for search " << lowSearch <<
" min " << axmin <<
" max " << axmax << std::endl;
592 const double *
y =
graph.GetY();
595 ooccoutE(
this,
Eval) <<
"HypoTestInverterResult::GetGraphX - need at least 2 points for interpolation (n=" <<
n <<
")\n";
596 return (
n>0) ?
y[0] : 0;
613 return (lowSearch) ? varmax : varmin;
616 return (lowSearch) ? varmin : varmax;
623 if (axmin >= axmax ) {
626 std::cout <<
"No rage given - check if extrapolation is needed " << std::endl;
632 double yfirst =
graph.GetY()[0];
633 double ylast =
graph.GetY()[
n-1];
639 if ( (
ymax < y0 && !lowSearch) || ( yfirst > y0 && lowSearch) ) {
643 if ( (
ymax < y0 && lowSearch) || ( ylast > y0 && !lowSearch) ) {
648 auto func = [&](
double x) {
658 <<
" , " <<
graph.Eval(
xmax) <<
" target " << y0 << std::endl;
661 bool ret = brf.
Solve(100, 1.E-16, 1.E-6);
663 ooccoutE(
this,
Eval) <<
"HypoTestInverterResult - interpolation failed for interval [" <<
xmin <<
"," <<
xmax
665 <<
" target=" << y0 <<
" return inf" << std::endl
666 <<
"One may try to clean up invalid points using HypoTestInverterResult::ExclusionCleanup()." << std::endl;
669 double limit = brf.
Root();
672 if (lowSearch) std::cout <<
"lower limit search : ";
673 else std::cout <<
"Upper limit search : ";
674 std::cout <<
"interpolation done between " <<
xmin <<
" and " <<
xmax
675 <<
"\n Found limit using RootFinder is " << limit << std::endl;
677 TString fname =
"graph_upper.root";
678 if (lowSearch) fname =
"graph_lower.root";
680 graph.Write(
"graph");
686 if (axmin >= axmax) {
689 std::cout <<
"do new interpolation dividing from " << index <<
" and " <<
y[index] << std::endl;
692 if (lowSearch && index >= 1 && (
y[0] - y0) * (
y[index]- y0) < 0) {
696 else if (!lowSearch && index <
n-2 && (
y[
n-1] - y0) * (
y[index+1]- y0) < 0) {
725 double val = (lowSearch) ?
xmin :
xmax;
726 oocoutW(
this,
Eval) <<
"HypoTestInverterResult::FindInterpolatedLimit"
727 <<
" - not enough points to get the inverted interval - return "
736 std::vector<unsigned int> index(
n );
740 for (
int i = 0; i <
n; ++i)
752 double * itrmax = std::max_element(
graph.GetY() ,
graph.GetY() +
n);
753 double ymax = *itrmax;
754 int iymax = itrmax -
graph.GetY();
755 double xwithymax =
graph.GetX()[iymax];
758 std::cout <<
" max of y " << iymax <<
" " << xwithymax <<
" " <<
ymax <<
" target is " << target << std::endl;
790 if (iymax <= (
n-1)/2 ) {
801 std::cout <<
" found xmin, xmax = " <<
xmin <<
" " <<
xmax <<
" for search " << lowSearch << std::endl;
812 if (upI < 1)
return xmin;
818 if (lowI >=
n-1)
return xmax;
826 std::cout <<
"finding " << lowSearch <<
" limit between " <<
xmin <<
" " <<
xmax << endl;
836 TString limitType = (lowSearch) ?
"lower" :
"upper";
837 ooccoutD(
this,
Eval) <<
"HypoTestInverterResult::FindInterpolateLimit "
838 <<
"the computed " << limitType <<
" limit is " << limit <<
" +/- " << error << std::endl;
841 std::cout <<
"Found limit is " << limit <<
" +/- " << error << std::endl;
889 int closestIndex = -1;
891 double smallestError = 2;
892 double bestValue = 2;
901 if ( dist < bestValue) {
906 if (bestIndex >=0)
return bestIndex;
914 std::vector<unsigned int> indx(
n);
916 std::vector<double> xsorted(
n);
917 for (
int i = 0; i <
n; ++i) xsorted[i] =
fXValues[indx[i] ];
921 std::cout <<
"finding closest point to " << xtarget <<
" is " << index1 <<
" " << indx[index1] << std::endl;
925 if (index1 < 0)
return indx[0];
926 if (index1 >=
n-1)
return indx[
n-1];
927 int index2 = index1 +1;
929 if (mode == 2)
return (
GetXValue(indx[index1]) <
GetXValue(indx[index2])) ? indx[index1] : indx[index2];
930 if (mode == 3)
return (
GetXValue(indx[index1]) >
GetXValue(indx[index2])) ? indx[index1] : indx[index2];
978 oocoutW(
this,
Eval) <<
"HypoTestInverterResult::CalculateEstimateError"
979 <<
"Empty result \n";
984 oocoutW(
this,
Eval) <<
"HypoTestInverterResult::CalculateEstimateError"
985 <<
" only points - return its error\n";
995 std::cout <<
"calculate estimate error " <<
type <<
" between " <<
xmin <<
" and " <<
xmax << std::endl;
1000 std::vector<unsigned int> indx(
fXValues.size());
1016 if (
graph.GetN() < 2) {
1017 if (np >= 2)
oocoutW(
this,
Eval) <<
"HypoTestInverterResult::CalculateEstimatedError - no valid points - cannot estimate the " <<
type <<
" limit error " << std::endl;
1028 TF1 fct(
"fct",
"exp([0] * (x - [2] ) + [1] * (x-[2])**2)", minX, maxX);
1029 double scale = maxX-minX;
1048 std::cout <<
"fitting for limit " <<
type <<
"between " << minX <<
" , " << maxX <<
" points considered " <<
graph.GetN() << std::endl;
1049 int fitstat =
graph.Fit(&fct,
" EX0");
1050 graph.SetMarkerStyle(20);
1056 int fitstat =
graph.Fit(&fct,
"Q EX0");
1060 double theError = 0;
1065 theError = std::min(fabs(
GetYError(index) /
m), maxX-minX);
1069 oocoutW(
this,
Eval) <<
"HypoTestInverterResult::CalculateEstimatedError - cannot estimate the " <<
type <<
" limit error " << std::endl;
1078 std::cout <<
"closes point to the limit is " << index <<
" " <<
GetXValue(index) <<
" and has error " <<
GetYError(index) << std::endl;
1111 if (!firstResult)
return 0;
1120 if (!result)
return 0;
1129 if (index < 0 || index >=
ArraySize() )
return 0;
1135 static bool useFirstB =
false;
1137 int bIndex = (useFirstB) ? 0 : index;
1144 if (bDistribution && sbDistribution) {
1154 std::vector<double> values(bDistribution->
GetSize());
1155 for (
int i = 0; i < bDistribution->
GetSize(); ++i) {
1167 const double dsig = 2* smax/ (npoints-1) ;
1168 std::vector<double> values(npoints);
1169 for (
int i = 0; i < npoints; ++i) {
1170 double nsig = -smax + dsig*i;
1172 if (pval < 0) {
return 0;}
1175 return new SamplingDistribution(
"Asymptotic expected values",
"Asymptotic expected values",values);
1185 oocoutE(
this,
Eval) <<
"HypoTestInverterResult::GetLimitDistribution"
1186 <<
" not enough points - return 0 " << std::endl;
1190 ooccoutD(
this,
Eval) <<
"HypoTestInverterResult - computing limit distribution...." << std::endl;
1195 std::vector<SamplingDistribution*> distVec( npoints );
1197 for (
unsigned int i = 0; i < distVec.size(); ++i) {
1202 distVec[i]->InverseCDF(0);
1203 sum += distVec[i]->GetSize();
1206 int size =
int(
sum/ npoints);
1209 ooccoutW(
this,
InputArguments) <<
"HypoTestInverterResult - set a minimum size of 10 for limit distribution" << std::endl;
1217 std::vector< std::vector<double> > quantVec(npoints );
1218 for (
int i = 0; i < npoints; ++i) {
1220 if (!distVec[i])
continue;
1223 std::vector<double> pvalues = distVec[i]->GetSamplingDistribution();
1224 delete distVec[i]; distVec[i] = 0;
1225 std::sort(pvalues.begin(), pvalues.end());
1230 quantVec[i] = std::vector<double>(size);
1231 for (
int ibin = 0; ibin < size; ++ibin) {
1233 p[0] = std::min( (ibin+1) * 1./
double(size), 1.0);
1236 (quantVec[i])[ibin] =
q[0];
1242 std::vector<unsigned int> index( npoints );
1249 std::vector<double> limits(size);
1251 for (
int j = 0; j < size; ++j ) {
1254 for (
int k = 0; k < npoints ; ++k) {
1255 if (quantVec[index[k]].size() > 0 )
1317 if (nEntries <= 0)
return (lower) ? 1 : 0;
1321 if (!
r->GetNullDistribution() && !
r->GetAltDistribution() ) {
1325 if (!limitDist)
return 0;
1327 if (values.size() <= 1)
return 0;
1349 std::vector<unsigned int> index(nEntries);
1352 for (
int j=0; j<nEntries; ++j) {
1356 ooccoutI(
this,
Eval) <<
"HypoTestInverterResult - cannot compute expected p value distribution for point, x = "
1357 <<
GetXValue(i) <<
" skip it " << std::endl;
1361 double *
x =
const_cast<double *
>(&values[0]);
1367 ooccoutE(
this,
Eval) <<
"HypoTestInverterResult - cannot compute limits , not enough points, n = " <<
g.GetN() << std::endl;
1378 if (!limitDist)
return 0;
1380 double *
x =
const_cast<double *
>(&values[0]);
Class for finding the root of a one dimensional function using the Brent algorithm.
double Root() const
Returns root value.
bool Solve(int maxIter=100, double absTol=1E-8, double relTol=1E-10)
Returns the X value corresponding to the function value fy for (xmin<x<xmax).
void SetNpx(int npx)
Set the number of point used to bracket root using a grid.
bool SetFunction(const ROOT::Math::IGenFunction &f, double xlow, double xup)
Sets the function for the rest of the algorithms.
Functor1D class for one-dimensional functions.
virtual void removeAll()
Remove all arguments from our set, deleting them if we own them.
RooAbsArg * first() const
virtual Double_t getMax(const char *name=0) const
Get maximum of currently defined range.
virtual Double_t getMin(const char *name=0) const
Get miniminum of currently defined range.
Bool_t addOwned(RooAbsArg &var, Bool_t silent=kFALSE) override
Add element to an owning set.
RooRealVar represents a variable that can be changed from the outside.
virtual TObject * clone(const char *newname) const
static double GetExpectedPValues(double pnull, double palt, double nsigma, bool usecls, bool oneSided=true)
function given the null and the alt p value - return the expected one given the N - sigma value
HypoTestInverterResult class holds the array of hypothesis test results and compute a confidence inte...
Double_t LowerLimit()
lower and upper bound of the confidence interval (to get upper/lower limits, multiply the size( = 1-c...
Double_t LowerLimitEstimatedError()
rough estimation of the error on the computed bound of the confidence interval Estimate of lower limi...
bool fInterpolateUpperLimit
double GetYValue(int index) const
function to return the value of the confidence level for the i^th entry in the results
SamplingDistribution * GetSignalAndBackgroundTestStatDist(int index) const
get the signal and background test statistic distribution
double fCLsCleanupThreshold
Double_t UpperLimitEstimatedError()
Estimate of lower limit error function evaluates only a rough error on the lower limit.
HypoTestResult * GetResult(int index) const
return a pointer to the i^th result object
double fLowerLimitError
interpolation option (linear or spline)
HypoTestInverterResult & operator=(const HypoTestInverterResult &other)
operator =
double CalculateEstimatedError(double target, bool lower=true, double xmin=1, double xmax=0)
Return an error estimate on the upper(lower) limit.
InterpolOption_t fInterpolOption
HypoTestInverterResult(const char *name=0)
default constructor
int ArraySize() const
number of entries in the results array
double FindInterpolatedLimit(double target, bool lowSearch=false, double xmin=1, double xmax=0)
interpolate to find a limit value Use a linear or a spline interpolation depending on the interpolati...
bool fInterpolateLowerLimit
two sided scan (look for lower/upper limit)
std::vector< double > fXValues
number of points used to build expected p-values
double CLsplusbError(int index) const
return the observed CLsplusb value for the i-th entry
double CLsError(int index) const
return the observed CLb value for the i-th entry
double GetGraphX(const TGraph &g, double y0, bool lowSearch, double &xmin, double &xmax) const
return the X value of the given graph for the target value y0 the graph is evaluated using linear int...
double CLbError(int index) const
return the observed CLb value for the i-th entry
double GetExpectedUpperLimit(double nsig=0, const char *opt="") const
get Limit value corresponding at the desired nsigma level (0) is median -1 sigma is 1 sigma
double GetXValue(int index) const
function to return the value of the parameter of interest for the i^th entry in the results
virtual ~HypoTestInverterResult()
destructor
bool Add(const HypoTestInverterResult &otherResult)
merge with the content of another HypoTestInverterResult object
int FindClosestPointIndex(double target, int mode=0, double xtarget=0)
TList fExpPValues
list of HypoTestResult for each point
double GetExpectedLowerLimit(double nsig=0, const char *opt="") const
get Limit value corresponding at the desired nsigma level (0) is median -1 sigma is 1 sigma
static int fgAsymptoticNumPoints
max sigma value used to scan asymptotic expected p values
static double fgAsymptoticMaxSigma
int ExclusionCleanup()
remove points that appear to have failed.
double CLs(int index) const
return the observed CLb value for the i-th entry
int FindIndex(double xvalue) const
find the index corresponding at the poi value xvalue If no points is found return -1 Note that a tole...
double GetYError(int index) const
function to return the estimated error on the value of the confidence level for the i^th entry in the...
double CLb(int index) const
return the observed CLb value for the i-th entry
double GetExpectedLimit(double nsig, bool lower, const char *opt="") const
get expected limit (lower/upper) depending on the flag for asymptotic is a special case (the distribu...
SamplingDistribution * GetExpectedPValueDist(int index) const
return expected distribution of p-values (Cls or Clsplusb)
double CLsplusb(int index) const
return the observed CLsplusb value for the i-th entry
SamplingDistribution * GetLimitDistribution(bool lower) const
get the limit distribution (lower/upper depending on the flag) by interpolating the expected p values...
SamplingDistribution * GetNullTestStatDist(int index) const
same in terms of alt and null
SamplingDistribution * GetBackgroundTestStatDist(int index) const
get the background test statistic distribution
HypoTestResult is a base class for results from hypothesis tests.
void SetBackgroundAsAlt(Bool_t l=kTRUE)
Bool_t GetPValueIsRightTail(void) const
virtual void Append(const HypoTestResult *other)
add values from another HypoTestResult
virtual Double_t CLsplusb() const
Convert AlternatePValue into a "confidence level".
void SetPValueIsRightTail(Bool_t pr)
virtual Double_t AlternatePValue() const
Return p-value for alternate hypothesis.
virtual Double_t NullPValue() const
Return p-value for null hypothesis.
void SetTestStatisticData(const Double_t tsd)
void SetNullDistribution(SamplingDistribution *null)
virtual Double_t CLs() const
is simply (not a method, but a quantity)
Bool_t GetBackGroundIsAlt(void) const
void SetAltDistribution(SamplingDistribution *alt)
SamplingDistribution * GetNullDistribution(void) const
SamplingDistribution * GetAltDistribution(void) const
This class simply holds a sampling distribution of some test statistic.
Int_t GetSize() const
size of samples
const std::vector< Double_t > & GetSamplingDistribution() const
Get test statistics values.
SimpleInterval is a concrete implementation of the ConfInterval interface.
virtual Double_t ConfidenceLevel() const
return confidence level
Double_t fConfidenceLevel
SimpleInterval & operator=(const SimpleInterval &other)
virtual void RemoveAll(TCollection *col)
Remove all objects in collection col from this collection.
virtual void SetOwner(Bool_t enable=kTRUE)
Set whether this collection is the owner (enable==true) of its content.
virtual Int_t GetSize() const
Return the capacity of the collection, i.e.
virtual Double_t Derivative(Double_t x, Double_t *params=0, Double_t epsilon=0.001) const
Returns the first derivative of the function at point x, computed by Richardson's extrapolation metho...
virtual void SetParLimits(Int_t ipar, Double_t parmin, Double_t parmax)
Set limits for parameter ipar.
virtual void SetParameters(const Double_t *params)
virtual void FixParameter(Int_t ipar, Double_t value)
Fix the value of a parameter The specified value will be used in a fit operation.
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
A TGraphErrors is a TGraph with error bars.
A TGraph is an object made of two arrays X and Y with npoints each.
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Set x and y values for point number i.
virtual void Add(TObject *obj)
virtual TObject * At(Int_t idx) const
Returns the object at position idx. Returns 0 if idx is out of range.
virtual void Delete(Option_t *option="")
Remove all objects from the list AND delete all heap based objects.
virtual TObject * First() const
Return the first object in the list. Returns 0 when list is empty.
virtual TObject * Clone(const char *newname="") const
Make a clone of an object using the Streamer facility.
virtual const char * GetName() const
Returns name of object.
virtual TObject * Clone(const char *newname="") const
Make a clone of an object using the Streamer facility.
virtual TObject * RemoveAt(Int_t idx)
void ToUpper()
Change string to upper case.
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
double normal_cdf(double x, double sigma=1, double x0=0)
Cumulative distribution function of the normal (Gaussian) distribution (lower tail).
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
Namespace for the RooStats classes.
Short_t Max(Short_t a, Short_t b)
void SortItr(Iterator first, Iterator last, IndexIterator index, Bool_t down=kTRUE)
Double_t QuietNaN()
Returns a quiet NaN as defined by IEEE 754
Double_t Floor(Double_t x)
T MinElement(Long64_t n, const T *a)
Return minimum of array a of length n.
Bool_t AreEqualRel(Double_t af, Double_t bf, Double_t relPrec)
Bool_t AreEqualAbs(Double_t af, Double_t bf, Double_t epsilon)
T MaxElement(Long64_t n, const T *a)
Return maximum of array a of length n.
Long64_t BinarySearch(Long64_t n, const T *array, T value)
void Quantiles(Int_t n, Int_t nprob, Double_t *x, Double_t *quantiles, Double_t *prob, Bool_t isSorted=kTRUE, Int_t *index=0, Int_t type=7)
Computes sample quantiles, corresponding to the given probabilities.
Double_t Infinity()
Returns an infinity as defined by the IEEE standard.
static uint64_t sum(uint64_t i)