This tutorial illustrates the basic features of the RTensor class, RTensor is a std::vector-like container with additional shape information.
The class serves as an interface in C++ between multi-dimensional data and the algorithm such as in machine learning workflows. The interface is similar to Numpy arrays and provides a subset of the functionality.
void tmva001_RTensor()
{
RTensor<float>
x({2, 2});
auto x2 =
x.Reshape({1, 4}).Squeeze();
auto x3 =
x.Reshape({2, 2}).
Slice({{0, 2}, {0, 1}});
float data[] = {5, 6, 7, 8};
RTensor<float>
y(data, {2, 2});
auto data2 = std::make_shared<std::vector<float>>(4);
}
RTensor<float> z(data2, {2, 2});
cout << z << endl;
}
static const double x2[5]
static const double x3[11]
RooCmdArg Slice(const RooArgSet &sliceSet)
{ { 0, 0 } { 0, 0 } }
{ 1, 2, 3, 4 }
{ 1, 3 }
{ { 5, 6 } { 7, 8 } }
{ { 9, 10 } { 11, 12 } }
- Date
- December 2018
- Author
- Stefan Wunsch
Definition in file tmva001_RTensor.C.