Loading [MathJax]/jax/output/HTML-CSS/config.js
Logo ROOT  
Reference Guide
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
TH2Poly.cxx
Go to the documentation of this file.
1// @(#)root/hist:$Id$
2// TH2Poly v2.1
3// Author: Olivier Couet, Deniz Gunceler, Danilo Piparo
4
5/*************************************************************************
6 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
7 * All rights reserved. *
8 * *
9 * For the licensing terms see $ROOTSYS/LICENSE. *
10 * For the list of contributors see $ROOTSYS/README/CREDITS. *
11 *************************************************************************/
12
13#include "TH2Poly.h"
14#include "TMultiGraph.h"
15#include "TGraph.h"
16#include "Riostream.h"
17#include "TList.h"
18#include "TMath.h"
19#include <cassert>
20
22
23/** \class TH2Poly
24 \ingroup Hist
252D Histogram with Polygonal Bins
26
27## Overview
28`TH2Poly` is a 2D Histogram class (TH2) allowing to define polygonal
29bins of arbitrary shape.
30
31Each bin in the `TH2Poly` histogram is a `TH2PolyBin` object.
32`TH2PolyBin` is a very simple class containing the vertices (stored
33as `TGraph`s or `TMultiGraph`s ) and contents of the polygonal
34bin as well as several related functions.
35
36Essentially, a `TH2Poly` is a TList of `TH2PolyBin` objects
37with methods to manipulate them.
38
39Bins are defined using one of the `AddBin()` methods. The bin definition
40should be done before filling.
41
42The histogram can be filled with `Fill(Double_t x, Double_t y, Double_t w)
43`. `w` is the weight.
44If no weight is specified, it is assumed to be 1.
45
46Not all histogram's area need to be binned. Filling an area without bins,
47will falls into the overflows. Adding a bin is not retroactive; it doesn't
48affect previous fillings. A `Fill()` call, that
49was previously ignored due to the lack of a bin at the specified location, is
50not reconsidered when that location is binned later.
51
52If there are two overlapping bins, the first one in the list will be incremented
53by `Fill()`.
54
55The histogram may automatically extends its limits if a bin outside the
56histogram limits is added. This is done when the default constructor (with no
57arguments) is used. It generates a histogram with no limits along the X and Y
58axis. Adding bins to it will extend it up to a proper size.
59
60`TH2Poly` implements a partitioning algorithm to speed up bins' filling
61(see the "Partitioning Algorithm" section for details).
62The partitioning algorithm divides the histogram into regions called cells.
63The bins that each cell intersects are recorded in an array of `TList`s.
64When a coordinate in the histogram is to be filled; the method (quickly) finds
65which cell the coordinate belongs. It then only loops over the bins
66intersecting that cell to find the bin the input coordinate corresponds to.
67The partitioning of the histogram is updated continuously as each bin is added.
68The default number of cells on each axis is 25. This number could be set to
69another value in the constructor or adjusted later by calling the
70`ChangePartition(Int_t, Int_t)` method. The partitioning algorithm is
71considerably faster than the brute force algorithm (i.e. checking if each bin
72contains the input coordinates), especially if the histogram is to be filled
73many times.
74
75The following very simple macro shows how to build and fill a `TH2Poly`:
76~~~ {.cpp}
77{
78 TH2Poly *h2p = new TH2Poly();
79
80 Double_t x1[] = {0, 5, 6};
81 Double_t y1[] = {0, 0, 5};
82 Double_t x2[] = {0, -1, -1, 0};
83 Double_t y2[] = {0, 0, -1, 3};
84 Double_t x3[] = {4, 3, 0, 1, 2.4};
85 Double_t y3[] = {4, 3.7, 1, 3.7, 2.5};
86
87 h2p->AddBin(3, x1, y1);
88 h2p->AddBin(4, x2, y2);
89 h2p->AddBin(5, x3, y3);
90
91 h2p->Fill(0.1, 0.01, 3);
92 h2p->Fill(-0.5, -0.5, 7);
93 h2p->Fill(-0.7, -0.5, 1);
94 h2p->Fill(1, 3, 1.5);
96~~~
97
98More examples can be found in th2polyBoxes.C, th2polyEurope.C, th2polyHoneycomb.C
99and th2polyUSA.C.
100
101## Partitioning Algorithm
102The partitioning algorithm forms an essential part of the `TH2Poly`
103class. It is implemented to speed up the filling of bins.
104
105With the brute force approach, the filling is done in the following way: An
106iterator loops over all bins in the `TH2Poly` and invokes the
107method `IsInside()` for each of them.
108This method checks if the input location is in that bin. If the filling
109coordinate is inside, the bin is filled. Looping over all the bin is
110very slow.
111
112The alternative is to divide the histogram into virtual rectangular regions
113called "cells". Each cell stores the pointers of the bins intersecting it.
114When a coordinate is to be filled, the method finds which cell the coordinate
115falls into. Since the cells are rectangular, this can be done very quickly.
116It then only loops over the bins associated with that cell and calls `IsInside()`
117only on that bins. This reduces considerably the number of bins on which `IsInside()`
118is called and therefore speed up by a huge factor the filling compare to the brute force
119approach where `IsInside()` is called for all bins.
120
121The addition of bins to the appropriate cells is done when the bin is added
122to the histogram. To do this, `AddBin()` calls the
123`AddBinToPartition()` method.
124This method adds the input bin to the partitioning matrix.
125
126The number of partition cells per axis can be specified in the constructor.
127If it is not specified, the default value of 25 along each axis will be
128assigned. This value was chosen because it is small enough to avoid slowing
129down AddBin(), while being large enough to enhance Fill() by a considerable
130amount. Regardless of how it is initialized at construction time, it can be
131changed later with the `ChangePartition()` method.
132`ChangePartition()` deletes the
133old partition matrix and generates a new one with the specified number of cells
134on each axis.
135
136The optimum number of partition cells per axis changes with the number of
137times `Fill()` will be called. Although partitioning greatly speeds up
138filling, it also adds a constant time delay into the code. When `Fill()`
139is to be called many times, it is more efficient to divide the histogram into
140a large number cells. However, if the histogram is to be filled only a few
141times, it is better to divide into a small number of cells.
142*/
143
144////////////////////////////////////////////////////////////////////////////////
145/// Default Constructor. No boundaries specified.
146
148{
149 Initialize(0., 0., 0., 0., 25, 25);
150 SetName("NoName");
151 SetTitle("NoTitle");
152 SetFloat();
153}
154
155////////////////////////////////////////////////////////////////////////////////
156/// Constructor with specified name and boundaries,
157/// but no partition cell number.
158
159TH2Poly::TH2Poly(const char *name,const char *title, Double_t xlow,Double_t xup
160 , Double_t ylow,Double_t yup)
161{
162 Initialize(xlow, xup, ylow, yup, 25, 25);
163 SetName(name);
164 SetTitle(title);
166}
167
168////////////////////////////////////////////////////////////////////////////////
169/// Constructor with specified name and boundaries and partition cell number.
170
171TH2Poly::TH2Poly(const char *name,const char *title,
172 Int_t nX, Double_t xlow, Double_t xup,
173 Int_t nY, Double_t ylow, Double_t yup)
174{
175 Initialize(xlow, xup, ylow, yup, nX, nY);
176 SetName(name);
177 SetTitle(title);
179}
180
181////////////////////////////////////////////////////////////////////////////////
182/// Destructor.
183
185{
186 delete[] fCells;
187 delete[] fIsEmpty;
188 delete[] fCompletelyInside;
189 // delete at the end the bin List since it owns the objects
190 delete fBins;
191}
192
193////////////////////////////////////////////////////////////////////////////////
194/// Create appropriate histogram bin.
195/// e.g. TH2Poly creates TH2PolyBin,
196/// TProfile2Poly creates TProfile2PolyBin
197/// This is done so that TH2Poly::AddBin does not have to be duplicated,
198/// but only create needs to be reimplemented for additional histogram types
199
201{
202 if (!poly) return 0;
203
204 if (fBins == 0) {
205 fBins = new TList();
206 fBins->SetOwner();
207 }
208
209 fNcells++;
210 Int_t ibin = fNcells - kNOverflow;
211 // if structure fsumw2 is created extend it
212 if (fSumw2.fN) fSumw2.Set(fNcells);
213 return new TH2PolyBin(poly, ibin);
214}
215
216////////////////////////////////////////////////////////////////////////////////
217/// Adds a new bin to the histogram. It can be any object having the method
218/// IsInside(). It returns the bin number in the histogram. It returns 0 if
219/// it failed to add. To allow the histogram limits to expand when a bin
220/// outside the limits is added, call SetFloat() before adding the bin.
221
223{
224 auto *bin = CreateBin(poly);
225 Int_t ibin = fNcells-kNOverflow;
226 if(!bin) return 0;
227
228 // If the bin lies outside histogram boundaries, then extends the boundaries.
229 // Also changes the partition information accordingly
230 Bool_t flag = kFALSE;
231 if (fFloat) {
232 if (fXaxis.GetXmin() > bin->GetXMin()) {
233 fXaxis.Set(100, bin->GetXMin(), fXaxis.GetXmax());
234 flag = kTRUE;
235 }
236 if (fXaxis.GetXmax() < bin->GetXMax()) {
237 fXaxis.Set(100, fXaxis.GetXmin(), bin->GetXMax());
238 flag = kTRUE;
239 }
240 if (fYaxis.GetXmin() > bin->GetYMin()) {
241 fYaxis.Set(100, bin->GetYMin(), fYaxis.GetXmax());
242 flag = kTRUE;
243 }
244 if (fYaxis.GetXmax() < bin->GetYMax()) {
245 fYaxis.Set(100, fYaxis.GetXmin(), bin->GetYMax());
246 flag = kTRUE;
247 }
248 if (flag) ChangePartition(fCellX, fCellY);
249 } else {
250 /*Implement polygon clipping code here*/
251 }
252
253 fBins->Add((TObject*) bin);
255
256 // Adds the bin to the partition matrix
258
259 return ibin;
260}
261
262////////////////////////////////////////////////////////////////////////////////
263/// Adds a new bin to the histogram. The number of vertices and their (x,y)
264/// coordinates are required as input. It returns the bin number in the
265/// histogram.
266
268{
269 TGraph *g = new TGraph(n, x, y);
270 Int_t bin = AddBin(g);
271 return bin;
272}
273
274////////////////////////////////////////////////////////////////////////////////
275/// Add a new bin to the histogram. The bin shape is a rectangle.
276/// It returns the bin number of the bin in the histogram.
277
279{
280 Double_t x[] = {x1, x1, x2, x2, x1};
281 Double_t y[] = {y1, y2, y2, y1, y1};
282 TGraph *g = new TGraph(5, x, y);
283 Int_t bin = AddBin(g);
284 return bin;
285}
286
287////////////////////////////////////////////////////////////////////////////////
288/// Performs the operation: this = this + c1*h1.
289
291{
292 Int_t bin;
293
294 TH2Poly *h1p = (TH2Poly *)h1;
295
296 // Check if number of bins is the same.
297 if (h1p->GetNumberOfBins() != GetNumberOfBins()) {
298 Error("Add", "Attempt to add histograms with different number of bins");
299 return kFALSE;
300 }
301
302 // Check if the bins are the same.
303 TList *h1pBins = h1p->GetBins();
304 TH2PolyBin *thisBin, *h1pBin;
305 for (bin = 1; bin <= GetNumberOfBins(); bin++) {
306 thisBin = (TH2PolyBin *)fBins->At(bin - 1);
307 h1pBin = (TH2PolyBin *)h1pBins->At(bin - 1);
308 if (thisBin->GetXMin() != h1pBin->GetXMin() ||
309 thisBin->GetXMax() != h1pBin->GetXMax() ||
310 thisBin->GetYMin() != h1pBin->GetYMin() ||
311 thisBin->GetYMax() != h1pBin->GetYMax()) {
312 Error("Add", "Attempt to add histograms with different bin limits");
313 return kFALSE;
314 }
315 }
316
317
318 // Create Sumw2 if h1p has Sumw2 set
319 if (fSumw2.fN == 0 && h1p->GetSumw2N() != 0) Sumw2();
320
321 // statistics can be preserved only in case of positive coefficients
322 // otherwise with negative c1 (histogram subtraction) one risks to get negative variances
323 Bool_t resetStats = (c1 < 0);
324 Double_t s1[kNstat] = {0};
325 Double_t s2[kNstat] = {0};
326 if (!resetStats) {
327 // need to initialize to zero s1 and s2 since
328 // GetStats fills only used elements depending on dimension and type
329 GetStats(s1);
330 h1->GetStats(s2);
331 }
332 // get number of entries now because afterwards UpdateBinContent will change it
333 Double_t entries = TMath::Abs( GetEntries() + c1 * h1->GetEntries() );
334
335
336 // Perform the Add.
337 Double_t factor = 1;
338 if (h1p->GetNormFactor() != 0)
339 factor = h1p->GetNormFactor() / h1p->GetSumOfWeights();
340 for (bin = 0; bin < fNcells; bin++) {
341 Double_t y = this->RetrieveBinContent(bin) + c1 * h1p->RetrieveBinContent(bin);
342 UpdateBinContent(bin, y);
343 if (fSumw2.fN) {
344 Double_t esq = factor * factor * h1p->GetBinErrorSqUnchecked(bin);
345 fSumw2.fArray[bin] += c1 * c1 * factor * factor * esq;
346 }
347 }
348
349 // update statistics (do here to avoid changes by SetBinContent)
350 if (resetStats) {
351 // statistics need to be reset in case coefficient are negative
352 ResetStats();
353 } else {
354 for (Int_t i = 0; i < kNstat; i++) {
355 if (i == 1) s1[i] += c1 * c1 * s2[i];
356 else s1[i] += c1 * s2[i];
357 }
358 PutStats(s1);
359 SetEntries(entries);
360 }
361 return kTRUE;
362}
363
364////////////////////////////////////////////////////////////////////////////////
365/// Adds the input bin into the partition cell matrix. This method is called
366/// in AddBin() and ChangePartition().
367
369{
370 // Cell Info
371 Int_t nl, nr, mb, mt; // Max/min indices of the cells that contain the bin
372 Double_t xclipl, xclipr, yclipb, yclipt; // x and y coordinates of a cell
373 Double_t binXmax, binXmin, binYmax, binYmin; // The max/min bin coordinates
374
375 binXmax = bin->GetXMax();
376 binXmin = bin->GetXMin();
377 binYmax = bin->GetYMax();
378 binYmin = bin->GetYMin();
379 nl = (Int_t)(floor((binXmin - fXaxis.GetXmin())/fStepX));
380 nr = (Int_t)(floor((binXmax - fXaxis.GetXmin())/fStepX));
381 mb = (Int_t)(floor((binYmin - fYaxis.GetXmin())/fStepY));
382 mt = (Int_t)(floor((binYmax - fYaxis.GetXmin())/fStepY));
383
384 // Make sure the array indices are correct.
385 if (nr>=fCellX) nr = fCellX-1;
386 if (mt>=fCellY) mt = fCellY-1;
387 if (nl<0) nl = 0;
388 if (mb<0) mb = 0;
389
390 // number of cells in the grid
391 //N.B. not to be confused with fNcells (the number of bins) !
393
394 // Loop over all cells
395 for (int i = nl; i <= nr; i++) {
396 xclipl = fXaxis.GetXmin() + i*fStepX;
397 xclipr = xclipl + fStepX;
398 for (int j = mb; j <= mt; j++) {
399 yclipb = fYaxis.GetXmin() + j*fStepY;
400 yclipt = yclipb + fStepY;
401
402 // If the bin is completely inside the cell,
403 // add that bin to the cell then return
404 if ((binXmin >= xclipl) && (binXmax <= xclipr) &&
405 (binYmax <= yclipt) && (binYmin >= yclipb)){
406 fCells[i + j*fCellX].Add((TObject*) bin);
407 fIsEmpty[i + j*fCellX] = kFALSE; // Makes the cell non-empty
408 return;
409 }
410
411 // If any of the sides of the cell intersect with any side of the bin,
412 // add that bin then continue
413 if (IsIntersecting(bin, xclipl, xclipr, yclipb, yclipt)) {
414 fCells[i + j*fCellX].Add((TObject*) bin);
415 fIsEmpty[i + j*fCellX] = kFALSE; // Makes the cell non-empty
416 continue;
417 }
418 // If a corner of the cell is inside the bin and since there is no
419 // intersection, then that cell completely inside the bin.
420 if((bin->IsInside(xclipl,yclipb)) || (bin->IsInside(xclipl,yclipt))){
421 fCells[i + j*fCellX].Add((TObject*) bin);
422 fIsEmpty[i + j*fCellX] = kFALSE; // Makes the cell non-empty
424 continue;
425 }
426 if((bin->IsInside(xclipr,yclipb)) || (bin->IsInside(xclipr,yclipt))){
427 fCells[i + j*fCellX].Add((TObject*) bin);
428 fIsEmpty[i + j*fCellX] = kFALSE; // Makes the cell non-empty
430 continue;
431 }
432 }
433 }
434}
435
436////////////////////////////////////////////////////////////////////////////////
437/// Changes the number of partition cells in the histogram.
438/// Deletes the old partition and constructs a new one.
439
441{
442 fCellX = n; // Set the number of cells
443 fCellY = m; // Set the number of cells
444
445 delete [] fCells; // Deletes the old partition
446
447 // number of cells in the grid
448 //N.B. not to be confused with fNcells (the number of bins) !
450 fCells = new TList [fNCells]; // Sets an empty partition
451
454
455 delete [] fIsEmpty;
456 delete [] fCompletelyInside;
457 fIsEmpty = new Bool_t [fNCells];
459
460 // Initializes the flags
461 for (int i = 0; i<fNCells; i++) {
462 fIsEmpty[i] = kTRUE;
464 }
465
466 // TList iterator
467 TIter next(fBins);
468 TObject *obj;
469
470 while((obj = next())){ // Loop over bins and add them to the partition
472 }
473}
474
475////////////////////////////////////////////////////////////////////////////////
476/// Make a complete copy of the underlying object. If 'newname' is set,
477/// the copy's name will be set to that name.
478
479TObject* TH2Poly::Clone(const char* newname) const
480{
481 // TH1::Clone relies on ::Copy to implemented by the derived class.
482 // Until this is implemented, revert to the much slower default version
483 // (and possibly non-thread safe).
484
485 return TNamed::Clone(newname);
486}
487
488////////////////////////////////////////////////////////////////////////////////
489/// Clears the contents of all bins in the histogram.
490
492{
493 TIter next(fBins);
494 TObject *obj;
495 TH2PolyBin *bin;
496
497 // Clears the bin contents
498 while ((obj = next())) {
499 bin = (TH2PolyBin*) obj;
500 bin->ClearContent();
501 }
502
503 // Clears the statistics
504 fTsumw = 0;
505 fTsumw2 = 0;
506 fTsumwx = 0;
507 fTsumwx2 = 0;
508 fTsumwy = 0;
509 fTsumwy2 = 0;
510 fEntries = 0;
511}
512
513////////////////////////////////////////////////////////////////////////////////
514/// Reset this histogram: contents, errors, etc.
515
517{
518 TIter next(fBins);
519 TObject *obj;
520 TH2PolyBin *bin;
521
522 // Clears the bin contents
523 while ((obj = next())) {
524 bin = (TH2PolyBin*) obj;
525 bin->ClearContent();
526 }
527
528 TH2::Reset(opt);
529}
530
531////////////////////////////////////////////////////////////////////////////////
532/// Returns the bin number of the bin at the given coordinate. -1 to -9 are
533/// the overflow and underflow bins. overflow bin -5 is the unbinned areas in
534/// the histogram (also called "the sea"). The third parameter can be left
535/// blank.
536/// The overflow/underflow bins are:
537///~~~ {.cpp}
538/// -1 | -2 | -3
539/// -------------
540/// -4 | -5 | -6
541/// -------------
542/// -7 | -8 | -9
543///~~~
544/// where -5 means is the "sea" bin (i.e. unbinned areas)
545
547{
548
549 // Checks for overflow/underflow
550 Int_t overflow = 0;
551 if (y > fYaxis.GetXmax()) overflow += -1;
552 else if (y > fYaxis.GetXmin()) overflow += -4;
553 else overflow += -7;
554 if (x > fXaxis.GetXmax()) overflow += -2;
555 else if (x > fXaxis.GetXmin()) overflow += -1;
556 if (overflow != -5) return overflow;
557
558 // Finds the cell (x,y) coordinates belong to
561
562 // Make sure the array indices are correct.
563 if (n>=fCellX) n = fCellX-1;
564 if (m>=fCellY) m = fCellY-1;
565 if (n<0) n = 0;
566 if (m<0) m = 0;
567
568 if (fIsEmpty[n+fCellX*m]) return -5;
569
570 TH2PolyBin *bin;
571
572 TIter next(&fCells[n+fCellX*m]);
573 TObject *obj;
574
575 // Search for the bin in the cell
576 while ((obj=next())) {
577 bin = (TH2PolyBin*)obj;
578 if (bin->IsInside(x,y)) return bin->GetBinNumber();
579 }
580
581 // If the search has not returned a bin, the point must be on "the sea"
582 return -5;
583}
584
585////////////////////////////////////////////////////////////////////////////////
586/// Increment the bin containing (x,y) by 1.
587/// Uses the partitioning algorithm.
588
590{
591 return Fill(x, y, 1.0);
592}
593
594////////////////////////////////////////////////////////////////////////////////
595/// Increment the bin containing (x,y) by w.
596/// Uses the partitioning algorithm.
597
599{
600 // see GetBinCOntent for definition of overflow bins
601 // in case of weighted events store weight square in fSumw2.fArray
602 // but with this indexing:
603 // fSumw2.fArray[0:kNOverflow-1] : sum of weight squares for the overflow bins
604 // fSumw2.fArray[kNOverflow:fNcells] : sum of weight squares for the standard bins
605 // where fNcells = kNOverflow + Number of bins. kNOverflow=9
606
607 if (fNcells <= kNOverflow) return 0;
608
609 // create sum of weight square array if weights are different than 1
610 if (!fSumw2.fN && w != 1.0 && !TestBit(TH1::kIsNotW) ) Sumw2();
611
612 Int_t overflow = 0;
613 if (y > fYaxis.GetXmax()) overflow += -1;
614 else if (y > fYaxis.GetXmin()) overflow += -4;
615 else overflow += -7;
616 if (x > fXaxis.GetXmax()) overflow += -2;
617 else if(x > fXaxis.GetXmin()) overflow += -1;
618 if (overflow != -5) {
619 fOverflow[-overflow - 1]+= w;
620 if (fSumw2.fN) fSumw2.fArray[-overflow - 1] += w*w;
621 return overflow;
622 }
623
624 // Finds the cell (x,y) coordinates belong to
627
628 // Make sure the array indices are correct.
629 if (n>=fCellX) n = fCellX-1;
630 if (m>=fCellY) m = fCellY-1;
631 if (n<0) n = 0;
632 if (m<0) m = 0;
633
634 if (fIsEmpty[n+fCellX*m]) {
635 fOverflow[4]+= w;
636 if (fSumw2.fN) fSumw2.fArray[4] += w*w;
637 return -5;
638 }
639
640 TH2PolyBin *bin;
641 Int_t bi;
642
643 TIter next(&fCells[n+fCellX*m]);
644 TObject *obj;
645
646 while ((obj=next())) {
647 bin = (TH2PolyBin*)obj;
648 // needs to account offset in array for overflow bins
649 bi = bin->GetBinNumber()-1+kNOverflow;
650 if (bin->IsInside(x,y)) {
651 bin->Fill(w);
652
653 // Statistics
654 fTsumw = fTsumw + w;
655 fTsumw2 = fTsumw2 + w*w;
656 fTsumwx = fTsumwx + w*x;
657 fTsumwx2 = fTsumwx2 + w*x*x;
658 fTsumwy = fTsumwy + w*y;
659 fTsumwy2 = fTsumwy2 + w*y*y;
660 if (fSumw2.fN) {
661 assert(bi < fSumw2.fN);
662 fSumw2.fArray[bi] += w*w;
663 }
664 fEntries++;
665
667
668 return bin->GetBinNumber();
669 }
670 }
671
672 fOverflow[4]+= w;
673 if (fSumw2.fN) fSumw2.fArray[4] += w*w;
674 return -5;
675}
676
677////////////////////////////////////////////////////////////////////////////////
678/// Increment the bin named "name" by w.
679
681{
682 TString sname(name);
683
684 TIter next(fBins);
685 TObject *obj;
686 TH2PolyBin *bin;
687
688 while ((obj = next())) {
689 bin = (TH2PolyBin*) obj;
690 if (!sname.CompareTo(bin->GetPolygon()->GetName())) {
691 bin->Fill(w);
692 fEntries++;
694 return bin->GetBinNumber();
695 }
696 }
697
698 return 0;
699}
700
701////////////////////////////////////////////////////////////////////////////////
702/// Fills a 2-D histogram with an array of values and weights.
703///
704/// \param [in] ntimes: number of entries in arrays x and w
705/// (array size must be ntimes*stride)
706/// \param [in] x: array of x values to be histogrammed
707/// \param [in] y: array of y values to be histogrammed
708/// \param [in] w: array of weights
709/// \param [in] stride: step size through arrays x, y and w
710
711void TH2Poly::FillN(Int_t ntimes, const Double_t* x, const Double_t* y,
712 const Double_t* w, Int_t stride)
713{
714 for (int i = 0; i < ntimes; i += stride) {
715 Fill(x[i], y[i], w[i]);
716 }
717}
718
719////////////////////////////////////////////////////////////////////////////////
720/// Returns the integral of bin contents.
721/// By default the integral is computed as the sum of bin contents.
722/// If option "width" or "area" is specified, the integral is the sum of
723/// the bin contents multiplied by the area of the bin.
724
726{
727 TString opt = option;
728 opt.ToLower();
729
730 if ((opt.Contains("width")) || (opt.Contains("area"))) {
731 Double_t w;
732 Double_t integral = 0.;
733
734 TIter next(fBins);
735 TObject *obj;
736 TH2PolyBin *bin;
737 while ((obj=next())) {
738 bin = (TH2PolyBin*) obj;
739 w = bin->GetArea();
740 integral += w*(bin->GetContent());
741 }
742
743 return integral;
744 } else {
745 return fTsumw;
746 }
747}
748
749////////////////////////////////////////////////////////////////////////////////
750/// Returns the content of the input bin
751/// For the overflow/underflow/sea bins:
752///~~~ {.cpp}
753/// -1 | -2 | -3
754/// ---+----+----
755/// -4 | -5 | -6
756/// ---+----+----
757/// -7 | -8 | -9
758///~~~
759/// where -5 is the "sea" bin (i.e. unbinned areas)
760
762{
763 if (bin > GetNumberOfBins() || bin == 0 || bin < -kNOverflow) return 0;
764 if (bin<0) return fOverflow[-bin - 1];
765 return ((TH2PolyBin*) fBins->At(bin-1))->GetContent();
766}
767
768////////////////////////////////////////////////////////////////////////////////
769/// Returns the value of error associated to bin number bin.
770/// If the sum of squares of weights has been defined (via Sumw2),
771/// this function returns the sqrt(sum of w2).
772/// otherwise it returns the sqrt(contents) for this bin.
773/// Bins are in range [1:nbins] and for bin < 0 in range [-9:-1] it returns errors for overflow bins.
774/// See also TH2Poly::GetBinContent
775
777{
778 if (bin == 0 || bin > GetNumberOfBins() || bin < - kNOverflow) return 0;
779 if (fBuffer) ((TH1*)this)->BufferEmpty();
780 // in case of weighted events the sum of the weights are stored in a different way than
781 // a normal histogram
782 // fSumw2.fArray[0:kNOverflow-1] : sum of weight squares for the overflow bins (
783 // fSumw2.fArray[kNOverflow:fNcells] : sum of weight squares for the standard bins
784 // fNcells = kNOverflow (9) + Number of bins
785 if (fSumw2.fN) {
786 Int_t binIndex = (bin > 0) ? bin+kNOverflow-1 : -(bin+1);
787 Double_t err2 = fSumw2.fArray[binIndex];
788 return TMath::Sqrt(err2);
789 }
790 Double_t error2 = TMath::Abs(GetBinContent(bin));
791 return TMath::Sqrt(error2);
792}
793
794////////////////////////////////////////////////////////////////////////////////
795/// Set the bin Error.
796/// Re-implementation for TH2Poly given the different bin indexing in the
797/// stored squared error array.
798/// See also notes in TH1::SetBinError
799///
800/// Bins are in range [1:nbins] and for bin < 0 in the range [-9:-1] the errors is set for the overflow bins
801
802
804{
805 if (bin == 0 || bin > GetNumberOfBins() || bin < - kNOverflow) return;
806 if (!fSumw2.fN) Sumw2();
808 // see comment in GetBinError for special convention of bin index in fSumw2 array
809 Int_t binIndex = (bin > 0) ? bin+kNOverflow-1 : -(bin+1);
810 fSumw2.fArray[binIndex] = error * error;
811}
812
813
814
815////////////////////////////////////////////////////////////////////////////////
816/// Returns the bin name.
817
818const char *TH2Poly::GetBinName(Int_t bin) const
819{
820 if (bin > GetNumberOfBins()) return "";
821 if (bin < 0) return "";
822 return ((TH2PolyBin*) fBins->At(bin-1))->GetPolygon()->GetName();
823}
824
825////////////////////////////////////////////////////////////////////////////////
826/// Returns the bin title.
827
828const char *TH2Poly::GetBinTitle(Int_t bin) const
829{
830 if (bin > GetNumberOfBins()) return "";
831 if (bin < 0) return "";
832 return ((TH2PolyBin*) fBins->At(bin-1))->GetPolygon()->GetTitle();
833}
834
835////////////////////////////////////////////////////////////////////////////////
836/// Returns the maximum value of the histogram.
837
839{
840 if (fNcells <= kNOverflow) return 0;
841 if (fMaximum != -1111) return fMaximum;
842
843 TH2PolyBin *b;
844
845 TIter next(fBins);
846 TObject *obj;
847 Double_t max,c;
848
849 max = ((TH2PolyBin*) next())->GetContent();
850
851 while ((obj=next())) {
852 b = (TH2PolyBin*)obj;
853 c = b->GetContent();
854 if (c>max) max = c;
855 }
856 return max;
857}
858
859////////////////////////////////////////////////////////////////////////////////
860/// Returns the maximum value of the histogram that is less than maxval.
861
863{
864 if (fNcells <= kNOverflow) return 0;
865 if (fMaximum != -1111) return fMaximum;
866
867 TH2PolyBin *b;
868
869 TIter next(fBins);
870 TObject *obj;
871 Double_t max,c;
872
873 max = ((TH2PolyBin*) next())->GetContent();
874
875 while ((obj=next())) {
876 b = (TH2PolyBin*)obj;
877 c = b->GetContent();
878 if (c>max && c<maxval) max=c;
879 }
880 return max;
881}
882
883////////////////////////////////////////////////////////////////////////////////
884/// Returns the minimum value of the histogram.
885
887{
888 if (fNcells <= kNOverflow) return 0;
889 if (fMinimum != -1111) return fMinimum;
890
891 TH2PolyBin *b;
892
893 TIter next(fBins);
894 TObject *obj;
895 Double_t min,c;
896
897 min = ((TH2PolyBin*) next())->GetContent();
898
899 while ((obj=next())) {
900 b = (TH2PolyBin*)obj;
901 c = b->GetContent();
902 if (c<min) min=c;
903 }
904 return min;
905}
906
907////////////////////////////////////////////////////////////////////////////////
908/// Returns the minimum value of the histogram that is greater than minval.
909
911{
912 if (fNcells <= kNOverflow) return 0;
913 if (fMinimum != -1111) return fMinimum;
914
915 TH2PolyBin *b;
916
917 TIter next(fBins);
918 TObject *obj;
919 Double_t min,c;
920
921 min = ((TH2PolyBin*) next())->GetContent();
922
923 while ((obj=next())) {
924 b = (TH2PolyBin*)obj;
925 c = b->GetContent();
926 if (c<min && c>minval) min=c;
927 }
928 return min;
929}
930
931////////////////////////////////////////////////////////////////////////////////
932/// Bins the histogram using a honeycomb structure
933
935 Int_t k, Int_t s)
936{
937 // Add the bins
938 Double_t numberOfHexagonsInTheRow;
939 Double_t x[6], y[6];
940 Double_t xloop, yloop, xtemp;
941 xloop = xstart; yloop = ystart + a/2.0;
942 for (int sCounter = 0; sCounter < s; sCounter++) {
943
944 xtemp = xloop; // Resets the temp variable
945
946 // Determine the number of hexagons in that row
947 if(sCounter%2 == 0){numberOfHexagonsInTheRow = k;}
948 else{numberOfHexagonsInTheRow = k - 1;}
949
950 for (int kCounter = 0; kCounter < numberOfHexagonsInTheRow; kCounter++) {
951
952 // Go around the hexagon
953 x[0] = xtemp;
954 y[0] = yloop;
955 x[1] = x[0];
956 y[1] = y[0] + a;
957 x[2] = x[1] + a*TMath::Sqrt(3)/2.0;
958 y[2] = y[1] + a/2.0;
959 x[3] = x[2] + a*TMath::Sqrt(3)/2.0;
960 y[3] = y[1];
961 x[4] = x[3];
962 y[4] = y[0];
963 x[5] = x[2];
964 y[5] = y[4] - a/2.0;
965
966 this->AddBin(6, x, y);
967
968 // Go right
969 xtemp += a*TMath::Sqrt(3);
970 }
971
972 // Increment the starting position
973 if (sCounter%2 == 0) xloop += a*TMath::Sqrt(3)/2.0;
974 else xloop -= a*TMath::Sqrt(3)/2.0;
975 yloop += 1.5*a;
976 }
977}
978
979////////////////////////////////////////////////////////////////////////////////
980/// Initializes the TH2Poly object. This method is called by the constructor.
981
983 Double_t ylow, Double_t yup, Int_t n, Int_t m)
984{
985 Int_t i;
986 fDimension = 2; //The dimension of the histogram
987
988 fBins = 0;
990
991 // Sets the boundaries of the histogram
992 fXaxis.Set(100, xlow, xup);
993 fYaxis.Set(100, ylow, yup);
994
995 for (i=0; i<9; i++) fOverflow[i] = 0.;
996
997 // Statistics
998 fEntries = 0; // The total number of entries
999 fTsumw = 0.; // Total amount of content in the histogram
1000 fTsumw2 = 0.; // Sum square of the weights
1001 fTsumwx = 0.; // Weighted sum of x coordinates
1002 fTsumwx2 = 0.; // Weighted sum of the squares of x coordinates
1003 fTsumwy2 = 0.; // Weighted sum of the squares of y coordinates
1004 fTsumwy = 0.; // Weighted sum of y coordinates
1005
1006 fCellX = n; // Set the number of cells to default
1007 fCellY = m; // Set the number of cells to default
1008
1009 // number of cells in the grid
1010 //N.B. not to be confused with fNcells (the number of bins) !
1012 fCells = new TList [fNCells]; // Sets an empty partition
1013 fStepX = (fXaxis.GetXmax() - fXaxis.GetXmin())/fCellX; // Cell width
1014 fStepY = (fYaxis.GetXmax() - fYaxis.GetXmin())/fCellY; // Cell height
1015
1016 fIsEmpty = new Bool_t [fNCells]; // Empty partition
1017 fCompletelyInside = new Bool_t [fNCells]; // Cell is completely inside bin
1018
1019 for (i = 0; i<fNCells; i++) { // Initializes the flags
1020 fIsEmpty[i] = kTRUE;
1022 }
1023
1024 // 3D Painter flags
1027}
1028
1029////////////////////////////////////////////////////////////////////////////////
1030/// Returns kTRUE if the input bin is intersecting with the
1031/// input rectangle (xclipl, xclipr, yclipb, yclipt)
1032
1034 Double_t xclipl, Double_t xclipr,
1035 Double_t yclipb, Double_t yclipt)
1036{
1037 Int_t gn;
1038 Double_t *gx;
1039 Double_t *gy;
1040 Bool_t inter = kFALSE;
1041 TObject *poly = bin->GetPolygon();
1042
1043 if (poly->IsA() == TGraph::Class()) {
1044 TGraph *g = (TGraph*)poly;
1045 gx = g->GetX();
1046 gy = g->GetY();
1047 gn = g->GetN();
1048 inter = IsIntersectingPolygon(gn, gx, gy, xclipl, xclipr, yclipb, yclipt);
1049 }
1050
1051 if (poly->IsA() == TMultiGraph::Class()) {
1052 TMultiGraph *mg = (TMultiGraph*)poly;
1053 TList *gl = mg->GetListOfGraphs();
1054 if (!gl) return inter;
1055 TGraph *g;
1056 TIter next(gl);
1057 while ((g = (TGraph*) next())) {
1058 gx = g->GetX();
1059 gy = g->GetY();
1060 gn = g->GetN();
1061 inter = IsIntersectingPolygon(gn, gx, gy, xclipl, xclipr,
1062 yclipb, yclipt);
1063 if (inter) return inter;
1064 }
1065 }
1066
1067 return inter;
1068}
1069
1070////////////////////////////////////////////////////////////////////////////////
1071/// Returns kTRUE if the input polygon (bn, x, y) is intersecting with the
1072/// input rectangle (xclipl, xclipr, yclipb, yclipt)
1073
1075 Double_t xclipl, Double_t xclipr,
1076 Double_t yclipb, Double_t yclipt)
1077{
1078 Bool_t p0R, p0L, p0T, p0B, p0xM, p0yM, p1R, p1L, p1T;
1079 Bool_t p1B, p1xM, p1yM, p0In, p1In;
1080
1081 for (int counter = 0; counter < (bn-1); counter++) {
1082 // If both are on the same side, return kFALSE
1083 p0L = x[counter] <= xclipl; // Point 0 is on the left
1084 p1L = x[counter + 1] <= xclipl; // Point 1 is on the left
1085 if (p0L && p1L) continue;
1086 p0R = x[counter] >= xclipr; // Point 0 is on the right
1087 p1R = x[counter + 1] >= xclipr; // Point 1 is on the right
1088 if (p0R && p1R) continue;
1089 p0T = y[counter] >= yclipt; // Point 0 is at the top
1090 p1T = y[counter + 1] >= yclipt; // Point 1 is at the top
1091 if (p0T && p1T) continue;
1092 p0B = y[counter] <= yclipb; // Point 0 is at the bottom
1093 p1B = y[counter + 1] <= yclipb; // Point 1 is at the bottom
1094 if (p0B && p1B) continue;
1095
1096 // Checks to see if any are inside
1097 p0xM = !p0R && !p0L; // Point 0 is inside along x
1098 p0yM = !p0T && !p0B; // Point 1 is inside along x
1099 p1xM = !p1R && !p1L; // Point 0 is inside along y
1100 p1yM = !p1T && !p1B; // Point 1 is inside along y
1101 p0In = p0xM && p0yM; // Point 0 is inside
1102 p1In = p1xM && p1yM; // Point 1 is inside
1103 if (p0In) {
1104 if (p1In) continue;
1105 return kTRUE;
1106 } else {
1107 if (p1In) return kTRUE;
1108 }
1109
1110 // We know by now that the points are not in the same side and not inside.
1111
1112 // Checks to see if they are opposite
1113
1114 if (p0xM && p1xM) return kTRUE;
1115 if (p0yM && p1yM) return kTRUE;
1116
1117 // We now know that the points are in different x and y indices
1118
1119 Double_t xcoord[3], ycoord[3];
1120 xcoord[0] = x[counter];
1121 xcoord[1] = x[counter + 1];
1122 ycoord[0] = y[counter];
1123 ycoord[1] = y[counter + 1];
1124
1125 if (p0L) {
1126 if(p1T){
1127 xcoord[2] = xclipl;
1128 ycoord[2] = yclipb;
1129 if((TMath::IsInside(xclipl, yclipt, 3, xcoord, ycoord)) ||
1130 (TMath::IsInside(xclipr, yclipb, 3, xcoord, ycoord))) continue;
1131 else return kTRUE;
1132 } else if (p1B) {
1133 xcoord[2] = xclipl;
1134 ycoord[2] = yclipt;
1135 if((TMath::IsInside(xclipl, yclipb, 3, xcoord, ycoord)) ||
1136 (TMath::IsInside(xclipr, yclipt, 3, xcoord, ycoord))) continue;
1137 else return kTRUE;
1138 } else { // p1yM
1139 if (p0T) {
1140 xcoord[2] = xclipl;
1141 ycoord[2] = yclipb;
1142 if (TMath::IsInside(xclipr, yclipt, 3, xcoord, ycoord)) continue;
1143 else return kTRUE;
1144 }
1145 if (p0B) {
1146 xcoord[2] = xclipl;
1147 ycoord[2] = yclipt;
1148 if (TMath::IsInside(xclipr, yclipb, 3, xcoord, ycoord)) continue;
1149 else return kTRUE;
1150 }
1151 }
1152 } else if (p0R) {
1153 if (p1T) {
1154 xcoord[2] = xclipl;
1155 ycoord[2] = yclipb;
1156 if ((TMath::IsInside(xclipr, yclipb, 3, xcoord, ycoord)) ||
1157 (TMath::IsInside(xclipl, yclipt, 3, xcoord, ycoord))) continue;
1158 else return kTRUE;
1159 } else if (p1B) {
1160 xcoord[2] = xclipl;
1161 ycoord[2] = yclipt;
1162 if ((TMath::IsInside(xclipl, yclipb, 3, xcoord, ycoord)) ||
1163 (TMath::IsInside(xclipr, yclipt, 3, xcoord, ycoord))) continue;
1164 else return kTRUE;
1165 } else{ // p1yM
1166 if (p0T) {
1167 xcoord[2] = xclipr;
1168 ycoord[2] = yclipb;
1169 if (TMath::IsInside(xclipl, yclipt, 3, xcoord, ycoord)) continue;
1170 else return kTRUE;
1171 }
1172 if (p0B) {
1173 xcoord[2] = xclipr;
1174 ycoord[2] = yclipt;
1175 if (TMath::IsInside(xclipl, yclipb, 3, xcoord, ycoord)) continue;
1176 else return kTRUE;
1177 }
1178 }
1179 }
1180 }
1181 return kFALSE;
1182}
1183
1184////////////////////////////////////////////////////////////////////////////////
1185/// Merge TH2Polys
1186/// Given the special nature of the TH2Poly, the merge is implemented in
1187/// terms of subsequent TH2Poly::Add calls.
1189{
1190 for (auto h2pAsObj : *coll) {
1191 if (!Add((TH1*)h2pAsObj, 1.)) {
1192 Warning("Merge", "An issue was encountered during the merge operation.");
1193 return 0L;
1194 }
1195 }
1196 return GetEntries();
1197}
1198
1199////////////////////////////////////////////////////////////////////////////////
1200/// Save primitive as a C++ statement(s) on output stream out
1201
1202void TH2Poly::SavePrimitive(std::ostream &out, Option_t *option)
1203{
1204 out <<" "<<std::endl;
1205 out <<" "<< ClassName() <<" *";
1206
1207 //histogram pointer has by default the histogram name.
1208 //however, in case histogram has no directory, it is safer to add a
1209 //incremental suffix
1210 static Int_t hcounter = 0;
1211 TString histName = GetName();
1212 if (!fDirectory && !histName.Contains("Graph")) {
1213 hcounter++;
1214 histName += "__";
1215 histName += hcounter;
1216 }
1217 const char *hname = histName.Data();
1218
1219 //Construct the class initialization
1220 out << hname << " = new " << ClassName() << "(\"" << hname << "\", \""
1221 << GetTitle() << "\", " << fCellX << ", " << fXaxis.GetXmin()
1222 << ", " << fXaxis.GetXmax()
1223 << ", " << fCellY << ", " << fYaxis.GetXmin() << ", "
1224 << fYaxis.GetXmax() << ");" << std::endl;
1225
1226 // Save Bins
1227 TIter next(fBins);
1228 TObject *obj;
1229 TH2PolyBin *th2pBin;
1230
1231 while((obj = next())){
1232 th2pBin = (TH2PolyBin*) obj;
1233 th2pBin->GetPolygon()->SavePrimitive(out,
1234 TString::Format("th2poly%s",histName.Data()));
1235 }
1236
1237 // save bin contents
1238 out<<" "<<std::endl;
1239 Int_t bin;
1240 for (bin=1;bin<=GetNumberOfBins();bin++) {
1241 Double_t bc = GetBinContent(bin);
1242 if (bc) {
1243 out<<" "<<hname<<"->SetBinContent("<<bin<<","<<bc<<");"<<std::endl;
1244 }
1245 }
1246
1247 // save bin errors
1248 if (fSumw2.fN) {
1249 for (bin=1;bin<=GetNumberOfBins();bin++) {
1250 Double_t be = GetBinError(bin);
1251 if (be) {
1252 out<<" "<<hname<<"->SetBinError("<<bin<<","<<be<<");"<<std::endl;
1253 }
1254 }
1255 }
1256 TH1::SavePrimitiveHelp(out, hname, option);
1257}
1258
1259////////////////////////////////////////////////////////////////////////////////
1260/// Multiply this histogram by a constant c1.
1261
1263{
1264 for( int i = 0; i < this->GetNumberOfBins(); i++ ) {
1265 this->SetBinContent(i+1, c1*this->GetBinContent(i+1));
1266 }
1267 for( int i = 0; i < kNOverflow; i++ ) {
1268 this->SetBinContent(-i-1, c1*this->GetBinContent(-i-1) );
1269 }
1270}
1271
1272////////////////////////////////////////////////////////////////////////////////
1273/// Sets the contents of the input bin to the input content
1274/// Negative values between -1 and -9 are for the overflows and the sea
1275
1277{
1278 if (bin > GetNumberOfBins() || bin == 0 || bin < -9 ) return;
1279 if (bin > 0) {
1280 ((TH2PolyBin*) fBins->At(bin-1))->SetContent(content);
1281 }
1282 else
1283 fOverflow[-bin - 1] = content;
1284
1286 fEntries++;
1287}
1288
1289////////////////////////////////////////////////////////////////////////////////
1290/// When set to kTRUE, allows the histogram to expand if a bin outside the
1291/// limits is added.
1292
1294{
1295 fFloat = flag;
1296}
1297
1298////////////////////////////////////////////////////////////////////////////////
1299/// Return "true" if the point (x,y) is inside the bin of binnr.
1300
1302{
1303 if (!fBins) return false;
1304 TH2PolyBin* bin = (TH2PolyBin*)fBins->At(binnr);
1305 if (!bin) return false;
1306 return bin->IsInside(x,y);
1307}
1308
1309void TH2Poly::GetStats(Double_t *stats) const
1310{
1311 stats[0] = fTsumw;
1312 stats[1] = fTsumw2;
1313 stats[2] = fTsumwx;
1314 stats[3] = fTsumwx2;
1315 stats[4] = fTsumwy;
1316 stats[5] = fTsumwy2;
1317 stats[6] = fTsumwxy;
1318}
1319
1320/** \class TH2PolyBin
1321 \ingroup Hist
1322Helper class to represent a bin in the TH2Poly histogram
1323*/
1324
1325////////////////////////////////////////////////////////////////////////////////
1326/// Default constructor.
1327
1329{
1330 fPoly = 0;
1331 fContent = 0.;
1332 fNumber = 0;
1333 fXmax = -1111;
1334 fXmin = -1111;
1335 fYmax = -1111;
1336 fYmin = -1111;
1337 fArea = 0;
1339}
1340
1341////////////////////////////////////////////////////////////////////////////////
1342/// Normal constructor.
1343
1345{
1346 fContent = 0.;
1347 fNumber = bin_number;
1348 fArea = 0.;
1349 fPoly = poly;
1350 fXmax = -1111;
1351 fXmin = -1111;
1352 fYmax = -1111;
1353 fYmin = -1111;
1355}
1356
1357////////////////////////////////////////////////////////////////////////////////
1358/// Destructor.
1359
1361{
1362 if (fPoly) delete fPoly;
1363}
1364
1365////////////////////////////////////////////////////////////////////////////////
1366/// Returns the area of the bin.
1367
1369{
1370 Int_t bn;
1371
1372 if (fArea == 0) {
1373 if (fPoly->IsA() == TGraph::Class()) {
1374 TGraph *g = (TGraph*)fPoly;
1375 bn = g->GetN();
1376 fArea = g->Integral(0,bn-1);
1377 }
1378
1379 if (fPoly->IsA() == TMultiGraph::Class()) {
1381 TList *gl = mg->GetListOfGraphs();
1382 if (!gl) return fArea;
1383 TGraph *g;
1384 TIter next(gl);
1385 while ((g = (TGraph*) next())) {
1386 bn = g->GetN();
1387 fArea = fArea + g->Integral(0,bn-1);
1388 }
1389 }
1390 }
1391
1392 return fArea;
1393}
1394
1395////////////////////////////////////////////////////////////////////////////////
1396/// Returns the maximum value for the x coordinates of the bin.
1397
1399{
1400 if (fXmax != -1111) return fXmax;
1401
1402 Int_t bn,i;
1403 Double_t *bx;
1404
1405 if (fPoly->IsA() == TGraph::Class()) {
1406 TGraph *g = (TGraph*)fPoly;
1407 bx = g->GetX();
1408 bn = g->GetN();
1409 fXmax = bx[0];
1410 for (i=1; i<bn; i++) {if (fXmax < bx[i]) fXmax = bx[i];}
1411 }
1412
1413 if (fPoly->IsA() == TMultiGraph::Class()) {
1415 TList *gl = mg->GetListOfGraphs();
1416 if (!gl) return fXmax;
1417 TGraph *g;
1418 TIter next(gl);
1419 Bool_t first = kTRUE;
1420 while ((g = (TGraph*) next())) {
1421 bx = g->GetX();
1422 bn = g->GetN();
1423 if (first) {fXmax = bx[0]; first = kFALSE;}
1424 for (i=0; i<bn; i++) {if (fXmax < bx[i]) fXmax = bx[i];}
1425 }
1426 }
1427
1428 return fXmax;
1429}
1430
1431////////////////////////////////////////////////////////////////////////////////
1432/// Returns the minimum value for the x coordinates of the bin.
1433
1435{
1436 if (fXmin != -1111) return fXmin;
1437
1438 Int_t bn,i;
1439 Double_t *bx;
1440
1441 if (fPoly->IsA() == TGraph::Class()) {
1442 TGraph *g = (TGraph*)fPoly;
1443 bx = g->GetX();
1444 bn = g->GetN();
1445 fXmin = bx[0];
1446 for (i=1; i<bn; i++) {if (fXmin > bx[i]) fXmin = bx[i];}
1447 }
1448
1449 if (fPoly->IsA() == TMultiGraph::Class()) {
1451 TList *gl = mg->GetListOfGraphs();
1452 if (!gl) return fXmin;
1453 TGraph *g;
1454 TIter next(gl);
1455 Bool_t first = kTRUE;
1456 while ((g = (TGraph*) next())) {
1457 bx = g->GetX();
1458 bn = g->GetN();
1459 if (first) {fXmin = bx[0]; first = kFALSE;}
1460 for (i=0; i<bn; i++) {if (fXmin > bx[i]) fXmin = bx[i];}
1461 }
1462 }
1463
1464 return fXmin;
1465}
1466
1467////////////////////////////////////////////////////////////////////////////////
1468/// Returns the maximum value for the y coordinates of the bin.
1469
1471{
1472 if (fYmax != -1111) return fYmax;
1473
1474 Int_t bn,i;
1475 Double_t *by;
1476
1477 if (fPoly->IsA() == TGraph::Class()) {
1478 TGraph *g = (TGraph*)fPoly;
1479 by = g->GetY();
1480 bn = g->GetN();
1481 fYmax = by[0];
1482 for (i=1; i<bn; i++) {if (fYmax < by[i]) fYmax = by[i];}
1483 }
1484
1485 if (fPoly->IsA() == TMultiGraph::Class()) {
1487 TList *gl = mg->GetListOfGraphs();
1488 if (!gl) return fYmax;
1489 TGraph *g;
1490 TIter next(gl);
1491 Bool_t first = kTRUE;
1492 while ((g = (TGraph*) next())) {
1493 by = g->GetY();
1494 bn = g->GetN();
1495 if (first) {fYmax = by[0]; first = kFALSE;}
1496 for (i=0; i<bn; i++) {if (fYmax < by[i]) fYmax = by[i];}
1497 }
1498 }
1499
1500 return fYmax;
1501}
1502
1503////////////////////////////////////////////////////////////////////////////////
1504/// Returns the minimum value for the y coordinates of the bin.
1505
1507{
1508 if (fYmin != -1111) return fYmin;
1509
1510 Int_t bn,i;
1511 Double_t *by;
1512
1513 if (fPoly->IsA() == TGraph::Class()) {
1514 TGraph *g = (TGraph*)fPoly;
1515 by = g->GetY();
1516 bn = g->GetN();
1517 fYmin = by[0];
1518 for (i=1; i<bn; i++) {if (fYmin > by[i]) fYmin = by[i];}
1519 }
1520
1521 if (fPoly->IsA() == TMultiGraph::Class()) {
1523 TList *gl = mg->GetListOfGraphs();
1524 if (!gl) return fYmin;
1525 TGraph *g;
1526 TIter next(gl);
1527 Bool_t first = kTRUE;
1528 while ((g = (TGraph*) next())) {
1529 by = g->GetY();
1530 bn = g->GetN();
1531 if (first) {fYmin = by[0]; first = kFALSE;}
1532 for (i=0; i<bn; i++) {if (fYmin > by[i]) fYmin = by[i];}
1533 }
1534 }
1535
1536 return fYmin;
1537}
1538
1539////////////////////////////////////////////////////////////////////////////////
1540/// Return "true" if the point (x,y) is inside the bin.
1541
1543{
1544 Int_t in=0;
1545
1546 if (fPoly->IsA() == TGraph::Class()) {
1547 TGraph *g = (TGraph*)fPoly;
1548 in = g->IsInside(x, y);
1549 }
1550
1551 if (fPoly->IsA() == TMultiGraph::Class()) {
1553 in = mg->IsInside(x, y);
1554 }
1555
1556 return in;
1557}
1558
1559////////////////////////////////////////////////////////////////////////
1560/// RE-implement dummy functions to avoid users calling the
1561/// corresponding implemntations in TH1 or TH2
1562//////////////////////////////////////////////////////////////////////////
1563
1564////////////////////////////////////////////////////////////////////////////////
1565/// Performs the operation: this = this + c1*f1. NOT IMPLEMENTED for TH2Poly
1567{
1568 Error("Add","Not implement for TH2Poly");
1569 return kFALSE;
1570}
1571
1572////////////////////////////////////////////////////////////////////////////////
1573/// Replace contents of this histogram by the addition of h1 and h2. NOT IMPLEMENTED for TH2Poly
1575{
1576 Error("Add","Not implement for TH2Poly");
1577 return kFALSE;
1578}
1579
1580////////////////////////////////////////////////////////////////////////////////
1581/// Performs the operation: this = this / c1*f1. NOT IMPLEMENTED for TH2Poly
1583{
1584 Error("Divide","Not implement for TH2Poly");
1585 return kFALSE;
1586}
1587
1588////////////////////////////////////////////////////////////////////////////////
1589/// NOT IMPLEMENTED for TH2Poly
1591{
1592 Error("Multiply","Not implement for TH2Poly");
1593 return kFALSE;
1594}
1595////////////////////////////////////////////////////////////////////////////////
1596/// NOT IMPLEMENTED for TH2Poly
1598{
1599 Error("ComputeIntegral","Not implement for TH2Poly");
1600 return TMath::QuietNaN();
1601}
1602////////////////////////////////////////////////////////////////////////////////
1603/// NOT IMPLEMENTED for TH2Poly
1605{
1606 Error("FFT","Not implement for TH2Poly");
1607 return nullptr;
1608}
1609////////////////////////////////////////////////////////////////////////////////
1610/// NOT IMPLEMENTED for TH2Poly
1612{
1613 Error("GetAsymmetry","Not implement for TH2Poly");
1614 return nullptr;
1615}
1616////////////////////////////////////////////////////////////////////////////////
1617/// NOT IMPLEMENTED for TH2Poly
1619{
1620 Error("Interpolate","Not implement for TH2Poly");
1621 return TMath::QuietNaN();
1622}
void Class()
Definition: Class.C:29
#define b(i)
Definition: RSha256.hxx:100
#define c(i)
Definition: RSha256.hxx:101
#define g(i)
Definition: RSha256.hxx:105
#define s1(x)
Definition: RSha256.hxx:91
static const double x2[5]
static const double x1[5]
int Int_t
Definition: RtypesCore.h:43
const Bool_t kFALSE
Definition: RtypesCore.h:90
double Double_t
Definition: RtypesCore.h:57
long long Long64_t
Definition: RtypesCore.h:71
const Bool_t kTRUE
Definition: RtypesCore.h:89
const char Option_t
Definition: RtypesCore.h:64
#define ClassImp(name)
Definition: Rtypes.h:361
@ kCounter
Definition: TDataType.h:34
char name[80]
Definition: TGX11.cxx:109
double floor(double)
Double_t * fArray
Definition: TArrayD.h:30
void Set(Int_t n)
Set size of this array to n doubles.
Definition: TArrayD.cxx:106
Int_t fN
Definition: TArray.h:38
Double_t GetXmax() const
Definition: TAxis.h:134
virtual void Set(Int_t nbins, Double_t xmin, Double_t xmax)
Initialize axis with fix bins.
Definition: TAxis.cxx:728
Double_t GetXmin() const
Definition: TAxis.h:133
Collection abstract base class.
Definition: TCollection.h:63
virtual void SetOwner(Bool_t enable=kTRUE)
Set whether this collection is the owner (enable==true) of its content.
1-Dim function class
Definition: TF1.h:210
A TGraph is an object made of two arrays X and Y with npoints each.
Definition: TGraph.h:41
The TH1 histogram class.
Definition: TH1.h:56
Double_t * fBuffer
[fBufferSize] entry buffer
Definition: TH1.h:105
virtual void SetTitle(const char *title)
See GetStatOverflows for more information.
Definition: TH1.cxx:6345
Int_t fNcells
number of bins(1D), cells (2D) +U/Overflows
Definition: TH1.h:86
virtual void GetStats(Double_t *stats) const
fill the array stats from the contents of this histogram The array stats must be correctly dimensione...
Definition: TH1.cxx:7345
Double_t fTsumw
Total Sum of weights.
Definition: TH1.h:93
Double_t fTsumw2
Total Sum of squares of weights.
Definition: TH1.h:94
Double_t fTsumwx2
Total Sum of weight*X*X.
Definition: TH1.h:96
virtual Double_t GetNormFactor() const
Definition: TH1.h:296
@ kIsNotW
Histogram is forced to be not weighted even when the histogram is filled with weighted different than...
Definition: TH1.h:167
TDirectory * fDirectory
!Pointer to directory holding this histogram
Definition: TH1.h:106
Double_t fMaximum
Maximum value for plotting.
Definition: TH1.h:97
Int_t fDimension
!Histogram dimension (1, 2 or 3 dim)
Definition: TH1.h:107
virtual void SetContent(const Double_t *content)
Replace bin contents by the contents of array content.
Definition: TH1.cxx:7862
virtual void SavePrimitiveHelp(std::ostream &out, const char *hname, Option_t *option="")
Helper function for the SavePrimitive functions from TH1 or classes derived from TH1,...
Definition: TH1.cxx:6931
virtual Double_t GetBinErrorSqUnchecked(Int_t bin) const
Definition: TH1.h:439
Double_t fMinimum
Minimum value for plotting.
Definition: TH1.h:98
virtual Double_t GetEntries() const
Return the current number of entries.
Definition: TH1.cxx:4302
virtual void ResetStats()
Reset the statistics including the number of entries and replace with values calculates from bin cont...
Definition: TH1.cxx:7411
virtual void SetBinErrorOption(EBinErrorOpt type)
Definition: TH1.h:372
@ kNstat
Definition: TH1.h:179
Double_t fEntries
Number of entries.
Definition: TH1.h:92
virtual void SetName(const char *name)
Change the name of this histogram.
Definition: TH1.cxx:8416
@ kNormal
errors with Normal (Wald) approximation: errorUp=errorLow= sqrt(N)
Definition: TH1.h:62
TAxis fXaxis
X axis descriptor.
Definition: TH1.h:87
TArrayD fSumw2
Array of sum of squares of weights.
Definition: TH1.h:101
virtual Int_t GetSumw2N() const
Definition: TH1.h:310
TAxis fYaxis
Y axis descriptor.
Definition: TH1.h:88
virtual Double_t GetSumOfWeights() const
Return the sum of weights excluding under/overflows.
Definition: TH1.cxx:7426
virtual void Sumw2(Bool_t flag=kTRUE)
Create structure to store sum of squares of weights.
Definition: TH1.cxx:8476
virtual void SetEntries(Double_t n)
Definition: TH1.h:381
Double_t fTsumwx
Total Sum of weight*X.
Definition: TH1.h:95
Helper class to represent a bin in the TH2Poly histogram.
Definition: TH2Poly.h:25
Double_t GetXMin()
Returns the minimum value for the x coordinates of the bin.
Definition: TH2Poly.cxx:1434
Double_t GetYMax()
Returns the maximum value for the y coordinates of the bin.
Definition: TH2Poly.cxx:1470
Double_t GetArea()
Returns the area of the bin.
Definition: TH2Poly.cxx:1368
void ClearContent()
Definition: TH2Poly.h:32
void Fill(Double_t w)
Definition: TH2Poly.h:33
Double_t GetYMin()
Returns the minimum value for the y coordinates of the bin.
Definition: TH2Poly.cxx:1506
Double_t fArea
Bin area.
Definition: TH2Poly.h:51
Double_t fContent
Bin content.
Definition: TH2Poly.h:52
Bool_t IsInside(Double_t x, Double_t y) const
Return "true" if the point (x,y) is inside the bin.
Definition: TH2Poly.cxx:1542
Double_t fXmax
X maximum value.
Definition: TH2Poly.h:55
Int_t fNumber
Bin number of the bin in TH2Poly.
Definition: TH2Poly.h:49
TH2PolyBin()
Default constructor.
Definition: TH2Poly.cxx:1328
Double_t fYmax
Y maximum value.
Definition: TH2Poly.h:56
Double_t GetXMax()
Returns the maximum value for the x coordinates of the bin.
Definition: TH2Poly.cxx:1398
Double_t GetContent() const
Definition: TH2Poly.h:35
Double_t fYmin
Y minimum value.
Definition: TH2Poly.h:54
void SetChanged(Bool_t flag)
Definition: TH2Poly.h:44
Int_t GetBinNumber() const
Definition: TH2Poly.h:37
Double_t fXmin
X minimum value.
Definition: TH2Poly.h:53
TObject * GetPolygon() const
Definition: TH2Poly.h:38
virtual ~TH2PolyBin()
Destructor.
Definition: TH2Poly.cxx:1360
TObject * fPoly
Object holding the polygon definition.
Definition: TH2Poly.h:50
2D Histogram with Polygonal Bins
Definition: TH2Poly.h:66
Double_t Integral(Option_t *option="") const
Returns the integral of bin contents.
Definition: TH2Poly.cxx:725
virtual void UpdateBinContent(Int_t bin, Double_t content)
Raw update of bin content on internal data structure see convention for numbering bins in TH1::GetBin...
Definition: TH2Poly.h:177
TList * GetBins()
Returns the TList of all bins in the histogram.
Definition: TH2Poly.h:98
void ClearBinContents()
Clears the contents of all bins in the histogram.
Definition: TH2Poly.cxx:491
Double_t fOverflow[kNOverflow]
Overflow bins.
Definition: TH2Poly.h:156
Bool_t fFloat
When set to kTRUE, allows the histogram to expand if a bin outside the limits is added.
Definition: TH2Poly.h:164
virtual void SetBinError(Int_t bin, Double_t error)
Set the bin Error.
Definition: TH2Poly.cxx:803
Bool_t IsIntersecting(TH2PolyBin *bin, Double_t xclipl, Double_t xclipr, Double_t yclipb, Double_t yclipt)
Returns kTRUE if the input bin is intersecting with the input rectangle (xclipl, xclipr,...
Definition: TH2Poly.cxx:1033
void Honeycomb(Double_t xstart, Double_t ystart, Double_t a, Int_t k, Int_t s)
Bins the histogram using a honeycomb structure.
Definition: TH2Poly.cxx:934
void SetFloat(Bool_t flag=true)
When set to kTRUE, allows the histogram to expand if a bin outside the limits is added.
Definition: TH2Poly.cxx:1293
virtual void GetStats(Double_t *stats) const
Fill the array stats from the contents of this histogram The array stats must be correctly dimensione...
Definition: TH2Poly.cxx:1309
virtual TH2PolyBin * CreateBin(TObject *poly)
Create appropriate histogram bin.
Definition: TH2Poly.cxx:200
virtual Double_t RetrieveBinContent(Int_t bin) const
Raw retrieval of bin content on internal data structure see convention for numbering bins in TH1::Get...
Definition: TH2Poly.h:174
Bool_t * fIsEmpty
[fNCells] The array that returns true if the cell at the given coordinate is empty
Definition: TH2Poly.h:162
TList * fBins
List of bins. The list owns the contained objects.
Definition: TH2Poly.h:167
void AddBinToPartition(TH2PolyBin *bin)
Adds the input bin into the partition cell matrix.
Definition: TH2Poly.cxx:368
Int_t GetNumberOfBins() const
Definition: TH2Poly.h:110
void SetBinContentChanged(Bool_t flag)
Definition: TH2Poly.h:119
virtual ~TH2Poly()
Destructor.
Definition: TH2Poly.cxx:184
virtual Int_t Fill(Double_t x, Double_t y)
Increment the bin containing (x,y) by 1.
Definition: TH2Poly.cxx:589
Bool_t * fCompletelyInside
[fNCells] The array that returns true if the cell at the given coordinate is completely inside a bin
Definition: TH2Poly.h:163
TH2Poly()
Default Constructor. No boundaries specified.
Definition: TH2Poly.cxx:147
Bool_t IsInsideBin(Int_t binnr, Double_t x, Double_t y)
Return "true" if the point (x,y) is inside the bin of binnr.
Definition: TH2Poly.cxx:1301
void SavePrimitive(std::ostream &out, Option_t *option="")
Save primitive as a C++ statement(s) on output stream out.
Definition: TH2Poly.cxx:1202
TObject * Clone(const char *newname="") const
Make a complete copy of the underlying object.
Definition: TH2Poly.cxx:479
virtual void Reset(Option_t *option)
Reset this histogram: contents, errors, etc.
Definition: TH2Poly.cxx:516
const char * GetBinTitle(Int_t bin) const
Returns the bin title.
Definition: TH2Poly.cxx:828
void SetNewBinAdded(Bool_t flag)
Definition: TH2Poly.h:121
void ChangePartition(Int_t n, Int_t m)
Changes the number of partition cells in the histogram.
Definition: TH2Poly.cxx:440
virtual Double_t Interpolate(Double_t, Double_t)
NOT IMPLEMENTED for TH2Poly.
Definition: TH2Poly.cxx:1618
@ kNOverflow
Definition: TH2Poly.h:154
Double_t GetMinimum() const
Returns the minimum value of the histogram.
Definition: TH2Poly.cxx:886
const char * GetBinName(Int_t bin) const
Returns the bin name.
Definition: TH2Poly.cxx:818
Double_t fStepX
Definition: TH2Poly.h:161
virtual Bool_t Multiply(TF1 *, Double_t)
NOT IMPLEMENTED for TH2Poly.
Definition: TH2Poly.cxx:1590
Int_t fNCells
Number of partition cells: fCellX*fCellY.
Definition: TH2Poly.h:159
virtual Double_t GetBinContent(Int_t bin) const
Returns the content of the input bin For the overflow/underflow/sea bins:
Definition: TH2Poly.cxx:761
void Initialize(Double_t xlow, Double_t xup, Double_t ylow, Double_t yup, Int_t n, Int_t m)
Initializes the TH2Poly object. This method is called by the constructor.
Definition: TH2Poly.cxx:982
Int_t fCellX
Number of partition cells in the x-direction of the histogram.
Definition: TH2Poly.h:157
virtual Bool_t Add(const TH1 *h1, Double_t c1)
Performs the operation: this = this + c1*h1.
Definition: TH2Poly.cxx:290
virtual Int_t AddBin(TObject *poly)
Adds a new bin to the histogram.
Definition: TH2Poly.cxx:222
virtual void Scale(Double_t c1=1, Option_t *option="")
Multiply this histogram by a constant c1.
Definition: TH2Poly.cxx:1262
Long64_t Merge(TCollection *)
Merge TH2Polys Given the special nature of the TH2Poly, the merge is implemented in terms of subseque...
Definition: TH2Poly.cxx:1188
Bool_t IsIntersectingPolygon(Int_t bn, Double_t *x, Double_t *y, Double_t xclipl, Double_t xclipr, Double_t yclipb, Double_t yclipt)
Returns kTRUE if the input polygon (bn, x, y) is intersecting with the input rectangle (xclipl,...
Definition: TH2Poly.cxx:1074
virtual TH1 * FFT(TH1 *, Option_t *)
NOT IMPLEMENTED for TH2Poly.
Definition: TH2Poly.cxx:1604
virtual Double_t GetBinError(Int_t bin) const
Returns the value of error associated to bin number bin.
Definition: TH2Poly.cxx:776
virtual TH1 * GetAsymmetry(TH1 *, Double_t, Double_t)
NOT IMPLEMENTED for TH2Poly.
Definition: TH2Poly.cxx:1611
virtual void SetBinContent(Int_t bin, Double_t content)
Sets the contents of the input bin to the input content Negative values between -1 and -9 are for the...
Definition: TH2Poly.cxx:1276
Double_t GetMaximum() const
Returns the maximum value of the histogram.
Definition: TH2Poly.cxx:838
Int_t FindBin(Double_t x, Double_t y, Double_t z=0)
Returns the bin number of the bin at the given coordinate.
Definition: TH2Poly.cxx:546
virtual Double_t ComputeIntegral(Bool_t)
NOT IMPLEMENTED for TH2Poly.
Definition: TH2Poly.cxx:1597
Double_t fStepY
Dimensions of a partition cell.
Definition: TH2Poly.h:161
void FillN(Int_t ntimes, const Double_t *x, const Double_t *y, const Double_t *w, Int_t stride=1)
Fills a 2-D histogram with an array of values and weights.
Definition: TH2Poly.cxx:711
TList * fCells
[fNCells] The array of TLists that store the bins that intersect with each cell. List do not own the ...
Definition: TH2Poly.h:160
virtual Bool_t Divide(TF1 *, Double_t)
Performs the operation: this = this / c1*f1. NOT IMPLEMENTED for TH2Poly.
Definition: TH2Poly.cxx:1582
Int_t fCellY
Number of partition cells in the y-direction of the histogram.
Definition: TH2Poly.h:158
virtual void PutStats(Double_t *stats)
Replace current statistics with the values in array stats.
Definition: TH2.cxx:2349
virtual void Reset(Option_t *option="")
Reset this histogram: contents, errors, etc.
Definition: TH2.cxx:2464
Double_t fTsumwxy
Definition: TH2.h:36
Double_t fTsumwy2
Definition: TH2.h:35
Double_t fTsumwy
Definition: TH2.h:34
A doubly linked list.
Definition: TList.h:44
virtual void Add(TObject *obj)
Definition: TList.h:87
virtual TObject * At(Int_t idx) const
Returns the object at position idx. Returns 0 if idx is out of range.
Definition: TList.cxx:356
A TMultiGraph is a collection of TGraph (or derived) objects.
Definition: TMultiGraph.h:36
virtual const char * GetTitle() const
Returns title of object.
Definition: TNamed.h:48
virtual TObject * Clone(const char *newname="") const
Make a clone of an object using the Streamer facility.
Definition: TNamed.cxx:74
virtual const char * GetName() const
Returns name of object.
Definition: TNamed.h:47
Mother of all ROOT objects.
Definition: TObject.h:37
virtual const char * GetName() const
Returns name of object.
Definition: TObject.cxx:357
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
Definition: TObject.h:187
virtual const char * ClassName() const
Returns name of class to which the object belongs.
Definition: TObject.cxx:128
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
Definition: TObject.cxx:877
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save a primitive as a C++ statement(s) on output stream "out".
Definition: TObject.cxx:664
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Definition: TObject.cxx:891
Basic string class.
Definition: TString.h:131
void ToLower()
Change string to lower-case.
Definition: TString.cxx:1125
int CompareTo(const char *cs, ECaseCompare cmp=kExact) const
Compare a string to char *cs2.
Definition: TString.cxx:418
const char * Data() const
Definition: TString.h:364
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
Definition: TString.cxx:2311
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Definition: TString.h:619
return c1
Definition: legend1.C:41
Double_t y[n]
Definition: legend1.C:17
Double_t x[n]
Definition: legend1.C:17
const Int_t n
Definition: legend1.C:16
TH1F * h1
Definition: legend1.C:5
static constexpr double s
static constexpr double L
static constexpr double mg
Bool_t IsInside(T xp, T yp, Int_t np, T *x, T *y)
Function which returns kTRUE if point xp,yp lies inside the polygon defined by the np points in array...
Definition: TMath.h:1199
Double_t QuietNaN()
Returns a quiet NaN as defined by IEEE 754
Definition: TMath.h:891
Double_t Sqrt(Double_t x)
Definition: TMath.h:681
Short_t Abs(Short_t d)
Definition: TMathBase.h:120
Definition: first.py:1
auto * m
Definition: textangle.C:8
auto * a
Definition: textangle.C:12