Logo ROOT  
Reference Guide
TGeoMatrix.cxx
Go to the documentation of this file.
1// @(#)root/geom:$Id$
2// Author: Andrei Gheata 25/10/01
3
4/*************************************************************************
5 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
6 * All rights reserved. *
7 * *
8 * For the licensing terms see $ROOTSYS/LICENSE. *
9 * For the list of contributors see $ROOTSYS/README/CREDITS. *
10 *************************************************************************/
11
12/** \class TGeoMatrix
13\ingroup Geometry_classes
14
15Geometrical transformation package.
16
17 All geometrical transformations handled by the modeller are provided as a
18built-in package. This was designed to minimize memory requirements and
19optimize performance of point/vector master-to-local and local-to-master
20computation. We need to have in mind that a transformation in TGeo has 2
21major use-cases. The first one is for defining the placement of a volume
22with respect to its container reference frame. This frame will be called
23'master' and the frame of the positioned volume - 'local'. If T is a
24transformation used for positioning volume daughters, then:
25
26~~~ {.cpp}
27 MASTER = T * LOCAL
28~~~
29
30 Therefore a local-to-master conversion will be performed by using T, while
31a master-to-local by using its inverse. The second use case is the computation
32of the global transformation of a given object in the geometry. Since the
33geometry is built as 'volumes-inside-volumes', this global transformation
34represent the pile-up of all local transformations in the corresponding
35branch. The conversion from the global reference frame and the given object
36is also called master-to-local, but it is handled by the manager class.
37 A general homogenous transformation is defined as a 4x4 matrix embedding
38a rotation, a translation and a scale. The advantage of this description
39is that each basic transformation can be represented as a homogenous matrix,
40composition being performed as simple matrix multiplication.
41
42 Rotation: Inverse rotation:
43
44~~~ {.cpp}
45 r11 r12 r13 0 r11 r21 r31 0
46 r21 r22 r23 0 r12 r22 r32 0
47 r31 r32 r33 0 r13 r23 r33 0
48 0 0 0 1 0 0 0 1
49~~~
50
51 Translation: Inverse translation:
52
53~~~ {.cpp}
54 1 0 0 tx 1 0 0 -tx
55 0 1 0 ty 0 1 0 -ty
56 0 0 1 tz 0 0 1 -tz
57 0 0 0 1 0 0 0 1
58~~~
59
60 Scale: Inverse scale:
61
62~~~ {.cpp}
63 sx 0 0 0 1/sx 0 0 0
64 0 sy 0 0 0 1/sy 0 0
65 0 0 sz 0 0 0 1/sz 0
66 0 0 0 1 0 0 0 1
67~~~
68
69 where:
70 - `rij` are the 3x3 rotation matrix components,
71 - `tx`, `ty`, `tz` are the translation components
72 - `sx`, `sy`, `sz` are arbitrary scale constants on each axis,
73
74 The disadvantage in using this approach is that computation for 4x4 matrices
75is expensive. Even combining two translation would become a multiplication
76of their corresponding matrices, which is quite an undesired effect. On the
77other hand, it is not a good idea to store a translation as a block of 16
78numbers. We have therefore chosen to implement each basic transformation type
79as a class deriving from the same basic abstract class and handling its specific
80data and point/vector transformation algorithms.
81
82\image html geom_transf.jpg
83
84### The base class TGeoMatrix defines abstract metods for:
85
86#### translation, rotation and scale getters. Every derived class stores only
87 its specific data, e.g. a translation stores an array of 3 doubles and a
88 rotation an array of 9. However, asking which is the rotation array of a
89 TGeoTranslation through the base TGeoMatrix interface is a legal operation.
90 The answer in this case is a pointer to a global constant array representing
91 an identity rotation.
92
93~~~ {.cpp}
94 Double_t *TGeoMatrix::GetTranslation()
95 Double_t *TGeoMatrix::GetRotation()
96 Double_t *TGeoMatrix::GetScale()
97~~~
98
99#### MasterToLocal() and LocalToMaster() point and vector transformations :
100
101~~~ {.cpp}
102 void TGeoMatrix::MasterToLocal(const Double_t *master, Double_t *local)
103 void TGeoMatrix::LocalToMaster(const Double_t *local, Double_t *master)
104 void TGeoMatrix::MasterToLocalVect(const Double_t *master, Double_t *local)
105 void TGeoMatrix::LocalToMasterVect(const Double_t *local, Double_t *master)
106~~~
107
108 These allow correct conversion also for reflections.
109
110#### Transformation type getters :
111
112~~~ {.cpp}
113 Bool_t TGeoMatrix::IsIdentity()
114 Bool_t TGeoMatrix::IsTranslation()
115 Bool_t TGeoMatrix::IsRotation()
116 Bool_t TGeoMatrix::IsScale()
117 Bool_t TGeoMatrix::IsCombi() (translation + rotation)
118 Bool_t TGeoMatrix::IsGeneral() (translation + rotation + scale)
119~~~
120
121 Combinations of basic transformations are represented by specific classes
122deriving from TGeoMatrix. In order to define a matrix as a combination of several
123others, a special class TGeoHMatrix is provided. Here is an example of matrix
124creation :
125
126### Matrix creation example:
127
128~~~ {.cpp}
129 root[0] TGeoRotation r1,r2;
130 r1.SetAngles(90,0,30); // rotation defined by Euler angles
131 r2.SetAngles(90,90,90,180,0,0); // rotation defined by GEANT3 angles
132 TGeoTranslation t1(-10,10,0);
133 TGeoTranslation t2(10,-10,5);
134 TGeoCombiTrans c1(t1,r1);
135 TGeoCombiTrans c2(t2,r2);
136 TGeoHMatrix h = c1 * c2; // composition is done via TGeoHMatrix class
137 root[7] TGeoHMatrix *ph = new TGeoHMatrix(hm); // this is the one we want to
138 // use for positioning a volume
139 root[8] ph->Print();
140 ...
141 pVolume->AddNode(pVolDaughter,id,ph) // now ph is owned by the manager
142~~~
143
144### Rule for matrix creation:
145 Unless explicitly used for positioning nodes (TGeoVolume::AddNode()) all
146matrices deletion have to be managed by users. Matrices passed to geometry
147have to be created by using new() operator and their deletion is done by
148TGeoManager class.
149
150### Available geometrical transformations
151
152#### TGeoTranslation
153Represent a (dx,dy,dz) translation. Data members:
154 Double_t fTranslation[3]. Translations can be added/subtracted.
155
156~~~ {.cpp}
157 TGeoTranslation t1;
158 t1->SetTranslation(-5,10,4);
159 TGeoTranslation *t2 = new TGeoTranslation(4,3,10);
160 t2->Subtract(&t1);
161~~~
162
163#### Rotations
164 Represent a pure rotation. Data members: Double_t fRotationMatrix[3*3].
165 Rotations can be defined either by Euler angles, either, by GEANT3 angles :
166
167~~~ {.cpp}
168 TGeoRotation *r1 = new TGeoRotation();
169 r1->SetAngles(phi, theta, psi); // all angles in degrees
170~~~
171
172 This represent the composition of : first a rotation about Z axis with
173 angle phi, then a rotation with theta about the rotated X axis, and
174 finally a rotation with psi about the new Z axis.
175
176~~~ {.cpp}
177 r1->SetAngles(th1,phi1, th2,phi2, th3,phi3)
178~~~
179
180 This is a rotation defined in GEANT3 style. Theta and phi are the spherical
181 angles of each axis of the rotated coordinate system with respect to the
182 initial one. This construction allows definition of malformed rotations,
183 e.g. not orthogonal. A check is performed and an error message is issued
184 in this case.
185
186 Specific utilities : determinant, inverse.
187
188#### Scale transformations
189 Represent a scale shrinking/enlargement. Data
190 members :Double_t fScale[3]. Not fully implemented yet.
191
192#### Combined transformations
193Represent a rotation followed by a translation.
194Data members: Double_t fTranslation[3], TGeoRotation *fRotation.
195
196~~~ {.cpp}
197 TGeoRotation *rot = new TGeoRotation("rot",10,20,30);
198 TGeoTranslation trans;
199 ...
200 TGeoCombiTrans *c1 = new TGeoCombiTrans(trans, rot);
201 TGeoCombiTrans *c2 = new TGeoCombiTrans("somename",10,20,30,rot)
202~~~
203
204
205#### TGeoGenTrans
206Combined transformations including a scale. Not implemented.
207
208#### TGeoIdentity
209A generic singleton matrix representing a identity transformation
210 NOTE: identified by the global variable gGeoIdentity.
211*/
212
213#include "Riostream.h"
214#include "TObjArray.h"
215
216#include "TGeoManager.h"
217#include "TGeoMatrix.h"
218#include "TMath.h"
219
221const Int_t kN3 = 3*sizeof(Double_t);
222const Int_t kN9 = 9*sizeof(Double_t);
223
224// statics and globals
225
227
228////////////////////////////////////////////////////////////////////////////////
229/// dummy constructor
230
232{
234}
235
236////////////////////////////////////////////////////////////////////////////////
237/// copy constructor
238
240 :TNamed(other)
241{
243}
244
245////////////////////////////////////////////////////////////////////////////////
246/// Constructor
247
249 :TNamed(name, "")
250{
251}
252
253////////////////////////////////////////////////////////////////////////////////
254/// Destructor
255
257{
258 if (IsRegistered() && gGeoManager) {
259 if (!gGeoManager->IsCleaning()) {
261 Warning("dtor", "Registered matrix %s was removed", GetName());
262 }
263 }
264}
265
266////////////////////////////////////////////////////////////////////////////////
267/// Returns true if no rotation or the rotation is about Z axis
268
270{
271 if (IsIdentity()) return kTRUE;
272 const Double_t *rot = GetRotationMatrix();
273 if (TMath::Abs(rot[6])>1E-9) return kFALSE;
274 if (TMath::Abs(rot[7])>1E-9) return kFALSE;
275 if ((1.-TMath::Abs(rot[8]))>1E-9) return kFALSE;
276 return kTRUE;
277}
278
279////////////////////////////////////////////////////////////////////////////////
280/// Get total size in bytes of this
281
283{
284 Int_t count = 4+28+strlen(GetName())+strlen(GetTitle()); // fId + TNamed
285 if (IsTranslation()) count += 12;
286 if (IsScale()) count += 12;
287 if (IsCombi() || IsGeneral()) count += 4 + 36;
288 return count;
289}
290
291////////////////////////////////////////////////////////////////////////////////
292/// Provide a pointer name containing uid.
293
295{
296 static TString name;
297 name = TString::Format("pMatrix%d", GetUniqueID());
298 return (char*)name.Data();
299}
300
301////////////////////////////////////////////////////////////////////////////////
302/// The homogenous matrix associated with the transformation is used for
303/// piling up's and visualization. A homogenous matrix is a 4*4 array
304/// containing the translation, the rotation and the scale components
305/// ~~~ {.cpp}
306/// | R00*sx R01 R02 dx |
307/// | R10 R11*sy R12 dy |
308/// | R20 R21 R22*sz dz |
309/// | 0 0 0 1 |
310/// ~~~
311/// where Rij is the rotation matrix, (sx, sy, sz) is the scale
312/// transformation and (dx, dy, dz) is the translation.
313
315{
316 Double_t *hmatrix = hmat;
317 const Double_t *mat = GetRotationMatrix();
318 for (Int_t i=0; i<3; i++) {
319 memcpy(hmatrix, mat, kN3);
320 mat += 3;
321 hmatrix += 3;
322 *hmatrix = 0.0;
323 hmatrix++;
324 }
325 memcpy(hmatrix, GetTranslation(), kN3);
326 hmatrix = hmat;
327 if (IsScale()) {
328 for (Int_t i=0; i<3; i++) {
329 *hmatrix *= GetScale()[i];
330 hmatrix += 5;
331 }
332 }
333 hmatrix[15] = 1.;
334}
335
336////////////////////////////////////////////////////////////////////////////////
337/// convert a point by multiplying its column vector (x, y, z, 1) to matrix inverse
338
339void TGeoMatrix::LocalToMaster(const Double_t *local, Double_t *master) const
340{
341 if (IsIdentity()) {
342 memcpy(master, local, kN3);
343 return;
344 }
345 Int_t i;
346 const Double_t *tr = GetTranslation();
347 if (!IsRotation()) {
348 for (i=0; i<3; i++) master[i] = tr[i] + local[i];
349 return;
350 }
351 const Double_t *rot = GetRotationMatrix();
352 for (i=0; i<3; i++) {
353 master[i] = tr[i]
354 + local[0]*rot[3*i]
355 + local[1]*rot[3*i+1]
356 + local[2]*rot[3*i+2];
357 }
358}
359
360////////////////////////////////////////////////////////////////////////////////
361/// convert a vector by multiplying its column vector (x, y, z, 1) to matrix inverse
362
363void TGeoMatrix::LocalToMasterVect(const Double_t *local, Double_t *master) const
364{
365 if (!IsRotation()) {
366 memcpy(master, local, kN3);
367 return;
368 }
369 const Double_t *rot = GetRotationMatrix();
370 for (Int_t i=0; i<3; i++) {
371 master[i] = local[0]*rot[3*i]
372 + local[1]*rot[3*i+1]
373 + local[2]*rot[3*i+2];
374 }
375}
376
377////////////////////////////////////////////////////////////////////////////////
378/// convert a point by multiplying its column vector (x, y, z, 1) to matrix inverse
379
380void TGeoMatrix::LocalToMasterBomb(const Double_t *local, Double_t *master) const
381{
382 if (IsIdentity()) {
383 memcpy(master, local, kN3);
384 return;
385 }
386 Int_t i;
387 const Double_t *tr = GetTranslation();
388 Double_t bombtr[3] = {0.,0.,0.};
389 gGeoManager->BombTranslation(tr, &bombtr[0]);
390 if (!IsRotation()) {
391 for (i=0; i<3; i++) master[i] = bombtr[i] + local[i];
392 return;
393 }
394 const Double_t *rot = GetRotationMatrix();
395 for (i=0; i<3; i++) {
396 master[i] = bombtr[i]
397 + local[0]*rot[3*i]
398 + local[1]*rot[3*i+1]
399 + local[2]*rot[3*i+2];
400 }
401}
402
403////////////////////////////////////////////////////////////////////////////////
404/// convert a point by multiplying its column vector (x, y, z, 1) to matrix
405
406void TGeoMatrix::MasterToLocal(const Double_t *master, Double_t *local) const
407{
408 if (IsIdentity()) {
409 memcpy(local, master, kN3);
410 return;
411 }
412 const Double_t *tr = GetTranslation();
413 Double_t mt0 = master[0]-tr[0];
414 Double_t mt1 = master[1]-tr[1];
415 Double_t mt2 = master[2]-tr[2];
416 if (!IsRotation()) {
417 local[0] = mt0;
418 local[1] = mt1;
419 local[2] = mt2;
420 return;
421 }
422 const Double_t *rot = GetRotationMatrix();
423 local[0] = mt0*rot[0] + mt1*rot[3] + mt2*rot[6];
424 local[1] = mt0*rot[1] + mt1*rot[4] + mt2*rot[7];
425 local[2] = mt0*rot[2] + mt1*rot[5] + mt2*rot[8];
426}
427
428////////////////////////////////////////////////////////////////////////////////
429/// convert a point by multiplying its column vector (x, y, z, 1) to matrix
430
431void TGeoMatrix::MasterToLocalVect(const Double_t *master, Double_t *local) const
432{
433 if (!IsRotation()) {
434 memcpy(local, master, kN3);
435 return;
436 }
437 const Double_t *rot = GetRotationMatrix();
438 for (Int_t i=0; i<3; i++) {
439 local[i] = master[0]*rot[i]
440 + master[1]*rot[i+3]
441 + master[2]*rot[i+6];
442 }
443}
444
445////////////////////////////////////////////////////////////////////////////////
446/// convert a point by multiplying its column vector (x, y, z, 1) to matrix
447
448void TGeoMatrix::MasterToLocalBomb(const Double_t *master, Double_t *local) const
449{
450 if (IsIdentity()) {
451 memcpy(local, master, kN3);
452 return;
453 }
454 const Double_t *tr = GetTranslation();
455 Double_t bombtr[3] = {0.,0.,0.};
456 Int_t i;
457 gGeoManager->UnbombTranslation(tr, &bombtr[0]);
458 if (!IsRotation()) {
459 for (i=0; i<3; i++) local[i] = master[i]-bombtr[i];
460 return;
461 }
462 const Double_t *rot = GetRotationMatrix();
463 for (i=0; i<3; i++) {
464 local[i] = (master[0]-bombtr[0])*rot[i]
465 + (master[1]-bombtr[1])*rot[i+3]
466 + (master[2]-bombtr[2])*rot[i+6];
467 }
468}
469
470////////////////////////////////////////////////////////////////////////////////
471/// Normalize a vector.
472
474{
475 Double_t normfactor = vect[0]*vect[0] + vect[1]*vect[1] + vect[2]*vect[2];
476 if (normfactor <= 1E-10) return;
477 normfactor = 1./TMath::Sqrt(normfactor);
478 vect[0] *= normfactor;
479 vect[1] *= normfactor;
480 vect[2] *= normfactor;
481}
482
483////////////////////////////////////////////////////////////////////////////////
484/// print the matrix in 4x4 format
485
487{
488 const Double_t *rot = GetRotationMatrix();
489 const Double_t *tr = GetTranslation();
490 printf("matrix %s - tr=%d rot=%d refl=%d scl=%d shr=%d reg=%d own=%d\n", GetName(),(Int_t)IsTranslation(),
492 (Int_t)IsOwned());
493 printf("%10.6f%12.6f%12.6f Tx = %10.6f\n", rot[0], rot[1], rot[2], tr[0]);
494 printf("%10.6f%12.6f%12.6f Ty = %10.6f\n", rot[3], rot[4], rot[5], tr[1]);
495 printf("%10.6f%12.6f%12.6f Tz = %10.6f\n", rot[6], rot[7], rot[8], tr[2]);
496 if (IsScale()) {
497 const Double_t *scl = GetScale();
498 printf("Sx=%10.6fSy=%12.6fSz=%12.6f\n", scl[0], scl[1], scl[2]);
499 }
500}
501
502////////////////////////////////////////////////////////////////////////////////
503/// Multiply by a reflection respect to YZ.
504
506{
507}
508
509////////////////////////////////////////////////////////////////////////////////
510/// Multiply by a reflection respect to ZX.
511
513{
514}
515
516////////////////////////////////////////////////////////////////////////////////
517/// Multiply by a reflection respect to XY.
518
520{
521}
522
523////////////////////////////////////////////////////////////////////////////////
524/// Register the matrix in the current manager, which will become the owner.
525
527{
528 if (!gGeoManager) {
529 Warning("RegisterYourself", "cannot register without geometry");
530 return;
531 }
532 if (!IsRegistered()) {
535 }
536}
537
538////////////////////////////////////////////////////////////////////////////////
539/// If no name was supplied in the ctor, the type of transformation is checked.
540/// A letter will be prepended to the name :
541/// - t - translation
542/// - r - rotation
543/// - s - scale
544/// - c - combi (translation + rotation)
545/// - g - general (tr+rot+scale)
546/// The index of the transformation in gGeoManager list of transformations will
547/// be appended.
548
550{
551 if (!gGeoManager) return;
552 if (strlen(GetName())) return;
553 char type = 'n';
554 if (IsTranslation()) type = 't';
555 if (IsRotation()) type = 'r';
556 if (IsScale()) type = 's';
557 if (IsCombi()) type = 'c';
558 if (IsGeneral()) type = 'g';
560 Int_t index = 0;
561 if (matrices) index =matrices->GetEntriesFast() - 1;
562 TString name = TString::Format("%c%d", type, index);
563 SetName(name);
564}
565
566/** \class TGeoTranslation
567\ingroup Geometry_classes
568
569Class describing translations. A translation is
570basically an array of 3 doubles matching the positions 12, 13
571and 14 in the homogenous matrix description.
572*/
573
575
576////////////////////////////////////////////////////////////////////////////////
577/// Default constructor
578
580{
581 for (Int_t i=0; i<3; i++) fTranslation[i] = 0;
582}
583
584////////////////////////////////////////////////////////////////////////////////
585/// Copy ctor.
586
588 :TGeoMatrix(other)
589{
590 SetTranslation(other);
591}
592
593////////////////////////////////////////////////////////////////////////////////
594/// Ctor. based on a general matrix
595
597 :TGeoMatrix(other)
598{
601 SetTranslation(other);
602}
603
604////////////////////////////////////////////////////////////////////////////////
605/// Default constructor defining the translation
606
608 :TGeoMatrix("")
609{
610 if (dx || dy || dz) SetBit(kGeoTranslation);
611 SetTranslation(dx, dy, dz);
612}
613
614////////////////////////////////////////////////////////////////////////////////
615/// Default constructor defining the translation
616
619{
620 if (dx || dy || dz) SetBit(kGeoTranslation);
621 SetTranslation(dx, dy, dz);
622}
623
624////////////////////////////////////////////////////////////////////////////////
625/// Assignment from a general matrix
626
628{
629 if (&matrix == this) return *this;
630 Bool_t registered = TestBit(kGeoRegistered);
631 TNamed::operator=(matrix);
632 SetTranslation(matrix);
633 SetBit(kGeoRegistered,registered);
636 return *this;
637}
638
639////////////////////////////////////////////////////////////////////////////////
640/// Translation composition
641
643{
644 const Double_t *tr = right.GetTranslation();
645 fTranslation[0] += tr[0];
646 fTranslation[1] += tr[1];
647 fTranslation[2] += tr[2];
649 return *this;
650}
651
653{
654 TGeoTranslation t = *this;
655 t *= right;
656 return t;
657}
658
660{
661 TGeoHMatrix t = *this;
662 t *= right;
663 return t;
664}
665
666////////////////////////////////////////////////////////////////////////////////
667/// Is-equal operator
668
670{
671 if (&other == this) return kTRUE;
672 const Double_t *tr = GetTranslation();
673 const Double_t *otr = other.GetTranslation();
674 for (auto i=0; i<3; i++)
675 if (TMath::Abs(tr[i]-otr[i])>1.E-10) return kFALSE;
676 return kTRUE;
677}
678
679////////////////////////////////////////////////////////////////////////////////
680/// Return a temporary inverse of this.
681
683{
685 h = *this;
686 Double_t tr[3];
687 tr[0] = -fTranslation[0];
688 tr[1] = -fTranslation[1];
689 tr[2] = -fTranslation[2];
690 h.SetTranslation(tr);
691 return h;
692}
693
694////////////////////////////////////////////////////////////////////////////////
695/// Adding a translation to this one
696
698{
699 const Double_t *trans = other->GetTranslation();
700 for (Int_t i=0; i<3; i++)
701 fTranslation[i] += trans[i];
702}
703
704////////////////////////////////////////////////////////////////////////////////
705/// Make a clone of this matrix.
706
708{
709 TGeoMatrix *matrix = new TGeoTranslation(*this);
710 return matrix;
711}
712
713////////////////////////////////////////////////////////////////////////////////
714/// Rotate about X axis of the master frame with angle expressed in degrees.
715
717{
718 Warning("RotateX", "Not implemented. Use TGeoCombiTrans instead");
719}
720
721////////////////////////////////////////////////////////////////////////////////
722/// Rotate about Y axis of the master frame with angle expressed in degrees.
723
725{
726 Warning("RotateY", "Not implemented. Use TGeoCombiTrans instead");
727}
728
729////////////////////////////////////////////////////////////////////////////////
730/// Rotate about Z axis of the master frame with angle expressed in degrees.
731
733{
734 Warning("RotateZ", "Not implemented. Use TGeoCombiTrans instead");
735}
736
737////////////////////////////////////////////////////////////////////////////////
738/// Subtracting a translation from this one
739
741{
742 const Double_t *trans = other->GetTranslation();
743 for (Int_t i=0; i<3; i++)
744 fTranslation[i] -= trans[i];
745}
746
747////////////////////////////////////////////////////////////////////////////////
748/// Set translation components
749
751{
752 fTranslation[0] = dx;
753 fTranslation[1] = dy;
754 fTranslation[2] = dz;
755 if (dx || dy || dz) SetBit(kGeoTranslation);
757}
758
759////////////////////////////////////////////////////////////////////////////////
760/// Set translation components
761
763{
765 const Double_t *transl = other.GetTranslation();
766 memcpy(fTranslation, transl, kN3);
767}
768
769////////////////////////////////////////////////////////////////////////////////
770/// convert a point by multiplying its column vector (x, y, z, 1) to matrix inverse
771
772void TGeoTranslation::LocalToMaster(const Double_t *local, Double_t *master) const
773{
774 const Double_t *tr = GetTranslation();
775 for (Int_t i=0; i<3; i++)
776 master[i] = tr[i] + local[i];
777}
778
779////////////////////////////////////////////////////////////////////////////////
780/// convert a vector to MARS
781
782void TGeoTranslation::LocalToMasterVect(const Double_t *local, Double_t *master) const
783{
784 memcpy(master, local, kN3);
785}
786
787////////////////////////////////////////////////////////////////////////////////
788/// convert a point by multiplying its column vector (x, y, z, 1) to matrix inverse
789
790void TGeoTranslation::LocalToMasterBomb(const Double_t *local, Double_t *master) const
791{
792 const Double_t *tr = GetTranslation();
793 Double_t bombtr[3] = {0.,0.,0.};
794 gGeoManager->BombTranslation(tr, &bombtr[0]);
795 for (Int_t i=0; i<3; i++)
796 master[i] = bombtr[i] + local[i];
797}
798
799////////////////////////////////////////////////////////////////////////////////
800/// convert a point by multiplying its column vector (x, y, z, 1) to matrix
801
802void TGeoTranslation::MasterToLocal(const Double_t *master, Double_t *local) const
803{
804 const Double_t *tr = GetTranslation();
805 for (Int_t i=0; i<3; i++)
806 local[i] = master[i]-tr[i];
807}
808
809////////////////////////////////////////////////////////////////////////////////
810/// convert a vector from MARS to local
811
812void TGeoTranslation::MasterToLocalVect(const Double_t *master, Double_t *local) const
813{
814 memcpy(local, master, kN3);
815}
816
817////////////////////////////////////////////////////////////////////////////////
818/// convert a point by multiplying its column vector (x, y, z, 1) to matrix
819
820void TGeoTranslation::MasterToLocalBomb(const Double_t *master, Double_t *local) const
821{
822 const Double_t *tr = GetTranslation();
823 Double_t bombtr[3] = {0.,0.,0.};
824 gGeoManager->UnbombTranslation(tr, &bombtr[0]);
825 for (Int_t i=0; i<3; i++)
826 local[i] = master[i]-bombtr[i];
827}
828
829////////////////////////////////////////////////////////////////////////////////
830/// Save a primitive as a C++ statement(s) on output stream "out".
831
832void TGeoTranslation::SavePrimitive(std::ostream &out, Option_t * /*option*/ /*= ""*/)
833{
834 if (TestBit(kGeoSavePrimitive)) return;
835 out << " // Translation: " << GetName() << std::endl;
836 out << " dx = " << fTranslation[0] << ";" << std::endl;
837 out << " dy = " << fTranslation[1] << ";" << std::endl;
838 out << " dz = " << fTranslation[2] << ";" << std::endl;
839 out << " TGeoTranslation *" << GetPointerName() << " = new TGeoTranslation(\"" << GetName() << "\",dx,dy,dz);" << std::endl;
841}
842
843/** \class TGeoRotation
844\ingroup Geometry_classes
845Class describing rotations. A rotation is a 3*3 array
846Column vectors has to be orthogonal unit vectors.
847*/
848
850
851////////////////////////////////////////////////////////////////////////////////
852/// Default constructor.
853
855{
856 for (Int_t i=0; i<9; i++) {
857 if (i%4) fRotationMatrix[i] = 0;
858 else fRotationMatrix[i] = 1.0;
859 }
860}
861
862////////////////////////////////////////////////////////////////////////////////
863/// Copy ctor.
864
866 :TGeoMatrix(other)
867{
868 SetRotation(other);
869}
870
871////////////////////////////////////////////////////////////////////////////////
872/// Copy ctor.
873
875 :TGeoMatrix(other)
876{
879 SetRotation(other);
880}
881
882////////////////////////////////////////////////////////////////////////////////
883/// Named rotation constructor
884
887{
888 for (Int_t i=0; i<9; i++) {
889 if (i%4) fRotationMatrix[i] = 0;
890 else fRotationMatrix[i] = 1.0;
891 }
892}
893
894////////////////////////////////////////////////////////////////////////////////
895/// Default rotation constructor with Euler angles. Phi is the rotation angle about
896/// Z axis and is done first, theta is the rotation about new X and is done
897/// second, psi is the rotation angle about new Z and is done third. All angles are in
898/// degrees.
899
902{
903 SetAngles(phi, theta, psi);
904}
905
906////////////////////////////////////////////////////////////////////////////////
907/// Rotation constructor a la GEANT3. Angles theta(i), phi(i) are the polar and azimuthal
908/// angles of the (i) axis of the rotated system with respect to the initial non-rotated
909/// system.
910/// Example : the identity matrix (no rotation) is composed by
911/// theta1=90, phi1=0, theta2=90, phi2=90, theta3=0, phi3=0
912/// SetBit(kGeoRotation);
913
914TGeoRotation::TGeoRotation(const char *name, Double_t theta1, Double_t phi1, Double_t theta2, Double_t phi2,
915 Double_t theta3, Double_t phi3)
917{
918 SetAngles(theta1, phi1, theta2, phi2, theta3, phi3);
919}
920
921////////////////////////////////////////////////////////////////////////////////
922/// Assignment from a general matrix
923
925{
926 if (&other == this) return *this;
927 Bool_t registered = TestBit(kGeoRegistered);
928 TNamed::operator=(other);
929 SetRotation(other);
930 SetBit(kGeoRegistered,registered);
933 return *this;
934}
935
936////////////////////////////////////////////////////////////////////////////////
937/// Composition
938
940{
941 if (!right.IsRotation()) return *this;
942 MultiplyBy(&right, true);
943 return *this;
944}
945
947{
948 TGeoRotation r = *this;
949 r *= right;
950 return r;
951}
952
954{
955 TGeoHMatrix t = *this;
956 t *= right;
957 return t;
958}
959
960////////////////////////////////////////////////////////////////////////////////
961/// Is-equal operator
962
964{
965 if (&other == this) return kTRUE;
966 const Double_t *rot = GetRotationMatrix();
967 const Double_t *orot = other.GetRotationMatrix();
968 for (auto i=0; i<9; i++)
969 if (TMath::Abs(rot[i]-orot[i])>1.E-10) return kFALSE;
970 return kTRUE;
971}
972
973////////////////////////////////////////////////////////////////////////////////
974/// Return a temporary inverse of this.
975
977{
979 h = *this;
980 Double_t newrot[9];
981 newrot[0] = fRotationMatrix[0];
982 newrot[1] = fRotationMatrix[3];
983 newrot[2] = fRotationMatrix[6];
984 newrot[3] = fRotationMatrix[1];
985 newrot[4] = fRotationMatrix[4];
986 newrot[5] = fRotationMatrix[7];
987 newrot[6] = fRotationMatrix[2];
988 newrot[7] = fRotationMatrix[5];
989 newrot[8] = fRotationMatrix[8];
990 h.SetRotation(newrot);
991 return h;
992}
993
994////////////////////////////////////////////////////////////////////////////////
995/// Perform orthogonality test for rotation.
996
998{
999 const Double_t *r = fRotationMatrix;
1000 Double_t cij;
1001 for (Int_t i=0; i<2; i++) {
1002 for (Int_t j=i+1; j<3; j++) {
1003 // check columns
1004 cij = TMath::Abs(r[i]*r[j]+r[i+3]*r[j+3]+r[i+6]*r[j+6]);
1005 if (cij>1E-4) return kFALSE;
1006 // check rows
1007 cij = TMath::Abs(r[3*i]*r[3*j]+r[3*i+1]*r[3*j+1]+r[3*i+2]*r[3*j+2]);
1008 if (cij>1E-4) return kFALSE;
1009 }
1010 }
1011 return kTRUE;
1012}
1013
1014////////////////////////////////////////////////////////////////////////////////
1015/// reset data members
1016
1018{
1021}
1022
1023////////////////////////////////////////////////////////////////////////////////
1024/// Perform a rotation about Z having the sine/cosine of the rotation angle.
1025
1027{
1028 fRotationMatrix[0] = sincos[1];
1029 fRotationMatrix[1] = -sincos[0];
1030 fRotationMatrix[3] = sincos[0];
1031 fRotationMatrix[4] = sincos[1];
1033}
1034
1035////////////////////////////////////////////////////////////////////////////////
1036/// Returns rotation angle about Z axis in degrees. If the rotation is a pure
1037/// rotation about Z, fixX parameter does not matter, otherwise its meaning is:
1038/// - fixX = true : result is the phi angle of the projection of the rotated X axis in the un-rotated XY
1039/// - fixX = false : result is the phi angle of the projection of the rotated Y axis - 90 degrees
1040
1042{
1043 Double_t phi;
1044 if (fixX) phi = 180.*TMath::ATan2(-fRotationMatrix[1],fRotationMatrix[4])/TMath::Pi();
1045 else phi = 180.*TMath::ATan2(fRotationMatrix[3], fRotationMatrix[0])/TMath::Pi();
1046 return phi;
1047}
1048
1049////////////////////////////////////////////////////////////////////////////////
1050/// convert a point by multiplying its column vector (x, y, z, 1) to matrix inverse
1051
1052void TGeoRotation::LocalToMaster(const Double_t *local, Double_t *master) const
1053{
1054 const Double_t *rot = GetRotationMatrix();
1055 for (Int_t i=0; i<3; i++) {
1056 master[i] = local[0]*rot[3*i]
1057 + local[1]*rot[3*i+1]
1058 + local[2]*rot[3*i+2];
1059 }
1060}
1061
1062////////////////////////////////////////////////////////////////////////////////
1063/// convert a point by multiplying its column vector (x, y, z, 1) to matrix
1064
1065void TGeoRotation::MasterToLocal(const Double_t *master, Double_t *local) const
1066{
1067 const Double_t *rot = GetRotationMatrix();
1068 for (Int_t i=0; i<3; i++) {
1069 local[i] = master[0]*rot[i]
1070 + master[1]*rot[i+3]
1071 + master[2]*rot[i+6];
1072 }
1073}
1074
1075////////////////////////////////////////////////////////////////////////////////
1076/// Make a clone of this matrix.
1077
1079{
1080 TGeoMatrix *matrix = new TGeoRotation(*this);
1081 return matrix;
1082}
1083
1084////////////////////////////////////////////////////////////////////////////////
1085/// Rotate about X axis of the master frame with angle expressed in degrees.
1086
1088{
1090 Double_t phi = angle*TMath::DegToRad();
1091 Double_t c = TMath::Cos(phi);
1092 Double_t s = TMath::Sin(phi);
1093 Double_t v[9];
1094 v[0] = fRotationMatrix[0];
1095 v[1] = fRotationMatrix[1];
1096 v[2] = fRotationMatrix[2];
1097 v[3] = c*fRotationMatrix[3]-s*fRotationMatrix[6];
1098 v[4] = c*fRotationMatrix[4]-s*fRotationMatrix[7];
1099 v[5] = c*fRotationMatrix[5]-s*fRotationMatrix[8];
1100 v[6] = s*fRotationMatrix[3]+c*fRotationMatrix[6];
1101 v[7] = s*fRotationMatrix[4]+c*fRotationMatrix[7];
1102 v[8] = s*fRotationMatrix[5]+c*fRotationMatrix[8];
1103
1104 memcpy(fRotationMatrix, v, kN9);
1105}
1106
1107////////////////////////////////////////////////////////////////////////////////
1108/// Rotate about Y axis of the master frame with angle expressed in degrees.
1109
1111{
1113 Double_t phi = angle*TMath::DegToRad();
1114 Double_t c = TMath::Cos(phi);
1115 Double_t s = TMath::Sin(phi);
1116 Double_t v[9];
1117 v[0] = c*fRotationMatrix[0]+s*fRotationMatrix[6];
1118 v[1] = c*fRotationMatrix[1]+s*fRotationMatrix[7];
1119 v[2] = c*fRotationMatrix[2]+s*fRotationMatrix[8];
1120 v[3] = fRotationMatrix[3];
1121 v[4] = fRotationMatrix[4];
1122 v[5] = fRotationMatrix[5];
1123 v[6] = -s*fRotationMatrix[0]+c*fRotationMatrix[6];
1124 v[7] = -s*fRotationMatrix[1]+c*fRotationMatrix[7];
1125 v[8] = -s*fRotationMatrix[2]+c*fRotationMatrix[8];
1126
1127 memcpy(fRotationMatrix, v, kN9);
1128}
1129
1130////////////////////////////////////////////////////////////////////////////////
1131/// Rotate about Z axis of the master frame with angle expressed in degrees.
1132
1134{
1136 Double_t phi = angle*TMath::DegToRad();
1137 Double_t c = TMath::Cos(phi);
1138 Double_t s = TMath::Sin(phi);
1139 Double_t v[9];
1140 v[0] = c*fRotationMatrix[0]-s*fRotationMatrix[3];
1141 v[1] = c*fRotationMatrix[1]-s*fRotationMatrix[4];
1142 v[2] = c*fRotationMatrix[2]-s*fRotationMatrix[5];
1143 v[3] = s*fRotationMatrix[0]+c*fRotationMatrix[3];
1144 v[4] = s*fRotationMatrix[1]+c*fRotationMatrix[4];
1145 v[5] = s*fRotationMatrix[2]+c*fRotationMatrix[5];
1146 v[6] = fRotationMatrix[6];
1147 v[7] = fRotationMatrix[7];
1148 v[8] = fRotationMatrix[8];
1149
1150 memcpy(&fRotationMatrix[0],v,kN9);
1151}
1152
1153////////////////////////////////////////////////////////////////////////////////
1154/// Multiply by a reflection respect to YZ.
1155
1157{
1158 if (leftside) {
1162 } else {
1166 }
1169}
1170
1171////////////////////////////////////////////////////////////////////////////////
1172/// Multiply by a reflection respect to ZX.
1173
1175{
1176 if (leftside) {
1180 } else {
1184 }
1187}
1188
1189////////////////////////////////////////////////////////////////////////////////
1190/// Multiply by a reflection respect to XY.
1191
1193{
1194 if (leftside) {
1198 } else {
1202 }
1205}
1206
1207////////////////////////////////////////////////////////////////////////////////
1208/// Save a primitive as a C++ statement(s) on output stream "out".
1209
1210void TGeoRotation::SavePrimitive(std::ostream &out, Option_t * /*option*/ /*= ""*/)
1211{
1212 if (TestBit(kGeoSavePrimitive)) return;
1213 out << " // Rotation: " << GetName() << std::endl;
1214 Double_t th1,ph1,th2,ph2,th3,ph3;
1215 GetAngles(th1,ph1,th2,ph2,th3,ph3);
1216 out << " thx = " << th1 << "; phx = " << ph1 << ";" << std::endl;
1217 out << " thy = " << th2 << "; phy = " << ph2 << ";" << std::endl;
1218 out << " thz = " << th3 << "; phz = " << ph3 << ";" << std::endl;
1219 out << " TGeoRotation *" << GetPointerName() << " = new TGeoRotation(\"" << GetName() << "\",thx,phx,thy,phy,thz,phz);" << std::endl;
1221}
1222
1223////////////////////////////////////////////////////////////////////////////////
1224/// Copy rotation elements from other rotation matrix.
1225
1227{
1228 SetBit(kGeoRotation, other.IsRotation());
1230}
1231
1232////////////////////////////////////////////////////////////////////////////////
1233/// Set matrix elements according to Euler angles. Phi is the rotation angle about
1234/// Z axis and is done first, theta is the rotation about new X and is done
1235/// second, psi is the rotation angle about new Z and is done third. All angles are in
1236/// degrees.
1237
1239{
1240 Double_t degrad = TMath::Pi()/180.;
1241 Double_t sinphi = TMath::Sin(degrad*phi);
1242 Double_t cosphi = TMath::Cos(degrad*phi);
1243 Double_t sinthe = TMath::Sin(degrad*theta);
1244 Double_t costhe = TMath::Cos(degrad*theta);
1245 Double_t sinpsi = TMath::Sin(degrad*psi);
1246 Double_t cospsi = TMath::Cos(degrad*psi);
1247
1248 fRotationMatrix[0] = cospsi*cosphi - costhe*sinphi*sinpsi;
1249 fRotationMatrix[1] = -sinpsi*cosphi - costhe*sinphi*cospsi;
1250 fRotationMatrix[2] = sinthe*sinphi;
1251 fRotationMatrix[3] = cospsi*sinphi + costhe*cosphi*sinpsi;
1252 fRotationMatrix[4] = -sinpsi*sinphi + costhe*cosphi*cospsi;
1253 fRotationMatrix[5] = -sinthe*cosphi;
1254 fRotationMatrix[6] = sinpsi*sinthe;
1255 fRotationMatrix[7] = cospsi*sinthe;
1256 fRotationMatrix[8] = costhe;
1257
1258 if (!IsValid()) Error("SetAngles", "invalid rotation (Euler angles : phi=%f theta=%f psi=%f)",phi,theta,psi);
1259 CheckMatrix();
1260}
1261
1262////////////////////////////////////////////////////////////////////////////////
1263/// Set matrix elements in the GEANT3 way
1264
1266 Double_t theta3, Double_t phi3)
1267{
1268 Double_t degrad = TMath::Pi()/180.;
1269 fRotationMatrix[0] = TMath::Cos(degrad*phi1)*TMath::Sin(degrad*theta1);
1270 fRotationMatrix[3] = TMath::Sin(degrad*phi1)*TMath::Sin(degrad*theta1);
1271 fRotationMatrix[6] = TMath::Cos(degrad*theta1);
1272 fRotationMatrix[1] = TMath::Cos(degrad*phi2)*TMath::Sin(degrad*theta2);
1273 fRotationMatrix[4] = TMath::Sin(degrad*phi2)*TMath::Sin(degrad*theta2);
1274 fRotationMatrix[7] = TMath::Cos(degrad*theta2);
1275 fRotationMatrix[2] = TMath::Cos(degrad*phi3)*TMath::Sin(degrad*theta3);
1276 fRotationMatrix[5] = TMath::Sin(degrad*phi3)*TMath::Sin(degrad*theta3);
1277 fRotationMatrix[8] = TMath::Cos(degrad*theta3);
1278 // do the trick to eliminate most of the floating point errors
1279 for (Int_t i=0; i<9; i++) {
1280 if (TMath::Abs(fRotationMatrix[i])<1E-15) fRotationMatrix[i] = 0;
1281 if (TMath::Abs(fRotationMatrix[i]-1)<1E-15) fRotationMatrix[i] = 1;
1282 if (TMath::Abs(fRotationMatrix[i]+1)<1E-15) fRotationMatrix[i] = -1;
1283 }
1284 if (!IsValid()) Error("SetAngles", "invalid rotation (G3 angles, th1=%f phi1=%f, th2=%f ph2=%f, th3=%f phi3=%f)",
1285 theta1,phi1,theta2,phi2,theta3,phi3);
1286 CheckMatrix();
1287}
1288
1289////////////////////////////////////////////////////////////////////////////////
1290/// Retrieve rotation angles
1291
1292void TGeoRotation::GetAngles(Double_t &theta1, Double_t &phi1, Double_t &theta2, Double_t &phi2,
1293 Double_t &theta3, Double_t &phi3) const
1294{
1295 Double_t raddeg = 180./TMath::Pi();
1296 theta1 = raddeg*TMath::ACos(fRotationMatrix[6]);
1297 theta2 = raddeg*TMath::ACos(fRotationMatrix[7]);
1298 theta3 = raddeg*TMath::ACos(fRotationMatrix[8]);
1299 if (TMath::Abs(fRotationMatrix[0])<1E-6 && TMath::Abs(fRotationMatrix[3])<1E-6) phi1=0.;
1300 else phi1 = raddeg*TMath::ATan2(fRotationMatrix[3],fRotationMatrix[0]);
1301 if (phi1<0) phi1+=360.;
1302 if (TMath::Abs(fRotationMatrix[1])<1E-6 && TMath::Abs(fRotationMatrix[4])<1E-6) phi2=0.;
1303 else phi2 = raddeg*TMath::ATan2(fRotationMatrix[4],fRotationMatrix[1]);
1304 if (phi2<0) phi2+=360.;
1305 if (TMath::Abs(fRotationMatrix[2])<1E-6 && TMath::Abs(fRotationMatrix[5])<1E-6) phi3=0.;
1306 else phi3 = raddeg*TMath::ATan2(fRotationMatrix[5],fRotationMatrix[2]);
1307 if (phi3<0) phi3+=360.;
1308}
1309
1310////////////////////////////////////////////////////////////////////////////////
1311/// Retrieve Euler angles.
1312
1314{
1315 const Double_t *m = fRotationMatrix;
1316 // Check if theta is 0 or 180.
1317 if (TMath::Abs(1.-TMath::Abs(m[8]))<1.e-9) {
1318 theta = TMath::ACos(m[8])*TMath::RadToDeg();
1319 phi = TMath::ATan2(-m[8]*m[1],m[0])*TMath::RadToDeg();
1320 psi = 0.; // convention, phi+psi matters
1321 return;
1322 }
1323 // sin(theta) != 0
1324 phi = TMath::ATan2(m[2],-m[5]);
1325 Double_t sphi = TMath::Sin(phi);
1326 if (TMath::Abs(sphi)<1.e-9) theta = -TMath::ASin(m[5]/TMath::Cos(phi))*TMath::RadToDeg();
1327 else theta = TMath::ASin(m[2]/sphi)*TMath::RadToDeg();
1328 phi *= TMath::RadToDeg();
1329 psi = TMath::ATan2(m[6],m[7])*TMath::RadToDeg();
1330}
1331
1332////////////////////////////////////////////////////////////////////////////////
1333/// computes determinant of the rotation matrix
1334
1336{
1337 Double_t
1344 return det;
1345}
1346
1347////////////////////////////////////////////////////////////////////////////////
1348/// performes an orthogonality check and finds if the matrix is a reflection
1349/// Warning("CheckMatrix", "orthogonality check not performed yet");
1350
1352{
1353 if (Determinant() < 0) SetBit(kGeoReflection);
1355 if (TMath::Abs(dd) < 1.E-12) ResetBit(kGeoRotation);
1356 else SetBit(kGeoRotation);
1357}
1358
1359////////////////////////////////////////////////////////////////////////////////
1360/// Get the inverse rotation matrix (which is simply the transpose)
1361
1363{
1364 if (!invmat) {
1365 Error("GetInverse", "no place to store the inverse matrix");
1366 return;
1367 }
1368 for (Int_t i=0; i<3; i++) {
1369 for (Int_t j=0; j<3; j++) {
1370 invmat[3*i+j] = fRotationMatrix[3*j+i];
1371 }
1372 }
1373}
1374
1375////////////////////////////////////////////////////////////////////////////////
1376/// Multiply this rotation with the one specified by ROT.
1377/// - after=TRUE (default): THIS*ROT
1378/// - after=FALSE : ROT*THIS
1379
1381{
1382 const Double_t *matleft, *matright;
1384 Double_t newmat[9] = {0};
1385 if (after) {
1386 matleft = &fRotationMatrix[0];
1387 matright = rot->GetRotationMatrix();
1388 } else {
1389 matleft = rot->GetRotationMatrix();
1390 matright = &fRotationMatrix[0];
1391 }
1392 for (Int_t i=0; i<3; i++) {
1393 for (Int_t j=0; j<3; j++) {
1394 for (Int_t k=0; k<3; k++) {
1395 newmat[3*i+j] += matleft[3*i+k] * matright[3*k+j];
1396 }
1397 }
1398 }
1399 memcpy(&fRotationMatrix[0], &newmat[0], kN9);
1400}
1401
1402/** \class TGeoScale
1403\ingroup Geometry_classes
1404Class describing scale transformations. A scale is an
1405array of 3 doubles (sx, sy, sz) multiplying elements 0, 5 and 10
1406of the homogenous matrix. A scale is normalized : sx*sy*sz = 1
1407*/
1408
1410
1411////////////////////////////////////////////////////////////////////////////////
1412/// default constructor
1413
1415{
1417 for (Int_t i=0; i<3; i++) fScale[i] = 1.;
1418}
1419
1420////////////////////////////////////////////////////////////////////////////////
1421/// Copy constructor
1422
1424 :TGeoMatrix(other)
1425{
1426 SetScale(other);
1427}
1428
1429////////////////////////////////////////////////////////////////////////////////
1430/// Ctor. based on a general matrix
1431
1433 :TGeoMatrix(other)
1434{
1437 SetScale(other);
1438}
1439
1440////////////////////////////////////////////////////////////////////////////////
1441/// default constructor
1442
1444 :TGeoMatrix("")
1445{
1447 SetScale(sx, sy, sz);
1448}
1449
1450////////////////////////////////////////////////////////////////////////////////
1451/// default constructor
1452
1455{
1457 SetScale(sx, sy, sz);
1458}
1459
1460////////////////////////////////////////////////////////////////////////////////
1461/// destructor
1462
1464{
1465}
1466
1467////////////////////////////////////////////////////////////////////////////////
1468/// Assignment from a general matrix
1469
1471{
1472 if (&matrix == this) return *this;
1473 Bool_t registered = TestBit(kGeoRegistered);
1474 TNamed::operator=(matrix);
1475 SetScale(matrix);
1476 SetBit(kGeoRegistered,registered);
1479 return *this;
1480}
1481
1482////////////////////////////////////////////////////////////////////////////////
1483/// Scale composition
1484
1486{
1487 const Double_t *scl = right.GetScale();
1488 fScale[0] *= scl[0];
1489 fScale[1] *= scl[1];
1490 fScale[2] *= scl[2];
1491 SetBit(kGeoReflection, fScale[0] * fScale[1] * fScale[2] < 0);
1492 if (!IsScale()) SetBit(kGeoScale, right.IsScale());
1493 return *this;
1494}
1495
1497{
1498 TGeoScale s = *this;
1499 s *= right;
1500 return s;
1501}
1502
1504{
1505 TGeoHMatrix t = *this;
1506 t *= right;
1507 return t;
1508}
1509
1510////////////////////////////////////////////////////////////////////////////////
1511/// Is-equal operator
1512
1514{
1515 if (&other == this) return kTRUE;
1516 const Double_t *scl = GetScale();
1517 const Double_t *oscl = other.GetScale();
1518 for (auto i=0; i<3; i++)
1519 if (TMath::Abs(scl[i]-oscl[i])>1.E-10) return kFALSE;
1520 return kTRUE;
1521}
1522
1523////////////////////////////////////////////////////////////////////////////////
1524/// Return a temporary inverse of this.
1525
1527{
1528 TGeoHMatrix h;
1529 h = *this;
1530 Double_t scale[3];
1531 scale[0] = 1./fScale[0];
1532 scale[1] = 1./fScale[1];
1533 scale[2] = 1./fScale[2];
1534 h.SetScale(scale);
1535 return h;
1536}
1537
1538////////////////////////////////////////////////////////////////////////////////
1539/// scale setter
1540
1542{
1543 if (TMath::Abs(sx*sy*sz) < 1.E-10) {
1544 Error("SetScale", "Invalid scale %f, %f, %f for transformation %s",sx,sy,sx,GetName());
1545 return;
1546 }
1547 fScale[0] = sx;
1548 fScale[1] = sy;
1549 fScale[2] = sz;
1550 if (sx*sy*sz<0) SetBit(kGeoReflection);
1552}
1553
1554////////////////////////////////////////////////////////////////////////////////
1555/// Set scale from other transformation
1556
1558{
1559 SetBit(kGeoScale, other.IsScale());
1561 memcpy(fScale, other.GetScale(), kN3);
1562}
1563
1564////////////////////////////////////////////////////////////////////////////////
1565/// Convert a local point to the master frame.
1566
1567void TGeoScale::LocalToMaster(const Double_t *local, Double_t *master) const
1568{
1569 master[0] = local[0]*fScale[0];
1570 master[1] = local[1]*fScale[1];
1571 master[2] = local[2]*fScale[2];
1572}
1573
1574////////////////////////////////////////////////////////////////////////////////
1575/// Convert the local distance along unit vector DIR to master frame. If DIR
1576/// is not specified perform a conversion such as the returned distance is the
1577/// the minimum for all possible directions.
1578
1580{
1581 Double_t scale;
1582 if (!dir) {
1583 scale = TMath::Abs(fScale[0]);
1584 if (TMath::Abs(fScale[1])<scale) scale = TMath::Abs(fScale[1]);
1585 if (TMath::Abs(fScale[2])<scale) scale = TMath::Abs(fScale[2]);
1586 } else {
1587 scale = fScale[0]*fScale[0]*dir[0]*dir[0] +
1588 fScale[1]*fScale[1]*dir[1]*dir[1] +
1589 fScale[2]*fScale[2]*dir[2]*dir[2];
1590 scale = TMath::Sqrt(scale);
1591 }
1592 return scale*dist;
1593}
1594
1595////////////////////////////////////////////////////////////////////////////////
1596/// Make a clone of this matrix.
1597
1599{
1600 TGeoMatrix *matrix = new TGeoScale(*this);
1601 return matrix;
1602}
1603
1604////////////////////////////////////////////////////////////////////////////////
1605/// Convert a global point to local frame.
1606
1607void TGeoScale::MasterToLocal(const Double_t *master, Double_t *local) const
1608{
1609 local[0] = master[0]/fScale[0];
1610 local[1] = master[1]/fScale[1];
1611 local[2] = master[2]/fScale[2];
1612}
1613
1614////////////////////////////////////////////////////////////////////////////////
1615/// Convert the distance along unit vector DIR to local frame. If DIR
1616/// is not specified perform a conversion such as the returned distance is the
1617/// the minimum for all possible directions.
1618
1620{
1621 Double_t scale;
1622 if (!dir) {
1623 scale = TMath::Abs(fScale[0]);
1624 if (TMath::Abs(fScale[1])>scale) scale = TMath::Abs(fScale[1]);
1625 if (TMath::Abs(fScale[2])>scale) scale = TMath::Abs(fScale[2]);
1626 scale = 1./scale;
1627 } else {
1628 scale = (dir[0]*dir[0])/(fScale[0]*fScale[0]) +
1629 (dir[1]*dir[1])/(fScale[1]*fScale[1]) +
1630 (dir[2]*dir[2])/(fScale[2]*fScale[2]);
1631 scale = TMath::Sqrt(scale);
1632 }
1633 return scale*dist;
1634}
1635
1636/** \class TGeoCombiTrans
1637\ingroup Geometry_classes
1638Class describing rotation + translation. Most frequently used in the description
1639of TGeoNode 's
1640*/
1641
1643
1644////////////////////////////////////////////////////////////////////////////////
1645/// dummy ctor
1646
1648{
1649 for (Int_t i=0; i<3; i++) fTranslation[i] = 0.0;
1650 fRotation = 0;
1651}
1652
1653////////////////////////////////////////////////////////////////////////////////
1654/// Copy ctor from generic matrix.
1655
1657 :TGeoMatrix(other)
1658{
1660 if (other.IsTranslation()) {
1662 memcpy(fTranslation,other.GetTranslation(),kN3);
1663 } else {
1664 for (Int_t i=0; i<3; i++) fTranslation[i] = 0.0;
1665 }
1666 if (other.IsRotation()) {
1669 fRotation = new TGeoRotation(other);
1670 }
1671 else fRotation = 0;
1672}
1673
1674////////////////////////////////////////////////////////////////////////////////
1675/// Constructor from a translation and a rotation.
1676
1678{
1679 if (tr.IsTranslation()) {
1681 const Double_t *trans = tr.GetTranslation();
1682 memcpy(fTranslation, trans, kN3);
1683 } else {
1684 for (Int_t i=0; i<3; i++) fTranslation[i] = 0.0;
1685 }
1686 if (rot.IsRotation()) {
1689 fRotation = new TGeoRotation(rot);
1691 }
1692 else fRotation = 0;
1693}
1694
1695////////////////////////////////////////////////////////////////////////////////
1696/// Named ctor.
1697
1700{
1701 for (Int_t i=0; i<3; i++) fTranslation[i] = 0.0;
1702 fRotation = 0;
1703}
1704
1705////////////////////////////////////////////////////////////////////////////////
1706/// Constructor from a translation specified by X,Y,Z and a pointer to a rotation. The rotation will not be owned by this.
1707
1709 :TGeoMatrix("")
1710{
1711 SetTranslation(dx, dy, dz);
1712 fRotation = 0;
1713 SetRotation(rot);
1714}
1715
1716////////////////////////////////////////////////////////////////////////////////
1717/// Named ctor
1718
1721{
1722 SetTranslation(dx, dy, dz);
1723 fRotation = 0;
1724 SetRotation(rot);
1725}
1726
1727////////////////////////////////////////////////////////////////////////////////
1728/// Assignment operator with generic matrix.
1729
1731{
1732 if (&matrix == this) return *this;
1733 Bool_t registered = TestBit(kGeoRegistered);
1734 Clear();
1735 TNamed::operator=(matrix);
1736
1737 if (matrix.IsTranslation()) {
1738 memcpy(fTranslation,matrix.GetTranslation(),kN3);
1739 }
1740 if (matrix.IsRotation()) {
1741 if (!fRotation) {
1742 fRotation = new TGeoRotation();
1744 } else {
1745 if (!TestBit(kGeoMatrixOwned)) {
1746 fRotation = new TGeoRotation();
1748 }
1749 }
1753 } else {
1756 fRotation = 0;
1757 }
1758 SetBit(kGeoRegistered,registered);
1760 return *this;
1761}
1762
1763////////////////////////////////////////////////////////////////////////////////
1764/// Is-equal operator
1765
1767{
1768 if (&other == this) return kTRUE;
1769 const Double_t *tr = GetTranslation();
1770 const Double_t *otr = other.GetTranslation();
1771 for (auto i=0; i<3; i++) if (TMath::Abs(tr[i]-otr[i])>1.E-10) return kFALSE;
1772 const Double_t *rot = GetRotationMatrix();
1773 const Double_t *orot = other.GetRotationMatrix();
1774 for (auto i=0; i<9; i++) if (TMath::Abs(rot[i]-orot[i])>1.E-10) return kFALSE;
1775 return kTRUE;
1776}
1777
1778////////////////////////////////////////////////////////////////////////////////
1779/// Composition
1780
1782{
1783 Multiply(&right);
1784 return *this;
1785}
1786
1788{
1789 TGeoHMatrix h = *this;
1790 h *= right;
1791 return h;
1792}
1793
1794////////////////////////////////////////////////////////////////////////////////
1795/// destructor
1796
1798{
1799 if (fRotation) {
1801 }
1802}
1803
1804////////////////////////////////////////////////////////////////////////////////
1805/// Reset translation/rotation to identity
1806
1808{
1809 if (IsTranslation()) {
1811 memset(fTranslation, 0, kN3);
1812 }
1813 if (fRotation) {
1814 if (TestBit(kGeoMatrixOwned)) delete fRotation;
1815 fRotation = 0;
1816 }
1820}
1821
1822////////////////////////////////////////////////////////////////////////////////
1823/// Return a temporary inverse of this.
1824
1826{
1827 TGeoHMatrix h;
1828 h = *this;
1829 Bool_t is_tr = IsTranslation();
1830 Bool_t is_rot = IsRotation();
1831 Double_t tr[3];
1832 Double_t newrot[9];
1833 const Double_t *rot = GetRotationMatrix();
1834 tr[0] = -fTranslation[0]*rot[0] - fTranslation[1]*rot[3] - fTranslation[2]*rot[6];
1835 tr[1] = -fTranslation[0]*rot[1] - fTranslation[1]*rot[4] - fTranslation[2]*rot[7];
1836 tr[2] = -fTranslation[0]*rot[2] - fTranslation[1]*rot[5] - fTranslation[2]*rot[8];
1837 h.SetTranslation(tr);
1838 newrot[0] = rot[0];
1839 newrot[1] = rot[3];
1840 newrot[2] = rot[6];
1841 newrot[3] = rot[1];
1842 newrot[4] = rot[4];
1843 newrot[5] = rot[7];
1844 newrot[6] = rot[2];
1845 newrot[7] = rot[5];
1846 newrot[8] = rot[8];
1847 h.SetRotation(newrot);
1848 h.SetBit(kGeoTranslation,is_tr);
1849 h.SetBit(kGeoRotation,is_rot);
1850 return h;
1851}
1852
1853////////////////////////////////////////////////////////////////////////////////
1854/// Make a clone of this matrix.
1855
1857{
1858 TGeoMatrix *matrix = new TGeoCombiTrans(*this);
1859 return matrix;
1860}
1861
1862////////////////////////////////////////////////////////////////////////////////
1863/// multiply to the right with an other transformation
1864/// if right is identity matrix, just return
1865
1867{
1868 if (right->IsIdentity()) return;
1869 TGeoHMatrix h = *this;
1870 h.Multiply(right);
1871 operator=(h);
1872}
1873
1874////////////////////////////////////////////////////////////////////////////////
1875/// Register the matrix in the current manager, which will become the owner.
1876
1878{
1881}
1882
1883////////////////////////////////////////////////////////////////////////////////
1884/// Rotate about X axis with angle expressed in degrees.
1885
1887{
1888 if (!fRotation || !TestBit(kGeoMatrixOwned)) {
1890 else fRotation = new TGeoRotation();
1892 }
1894 const Double_t *rot = fRotation->GetRotationMatrix();
1895 Double_t phi = angle*TMath::DegToRad();
1896 Double_t c = TMath::Cos(phi);
1897 Double_t s = TMath::Sin(phi);
1898 Double_t v[9];
1899 v[0] = rot[0];
1900 v[1] = rot[1];
1901 v[2] = rot[2];
1902 v[3] = c*rot[3]-s*rot[6];
1903 v[4] = c*rot[4]-s*rot[7];
1904 v[5] = c*rot[5]-s*rot[8];
1905 v[6] = s*rot[3]+c*rot[6];
1906 v[7] = s*rot[4]+c*rot[7];
1907 v[8] = s*rot[5]+c*rot[8];
1910 if (!IsTranslation()) return;
1911 v[0] = fTranslation[0];
1912 v[1] = c*fTranslation[1]-s*fTranslation[2];
1913 v[2] = s*fTranslation[1]+c*fTranslation[2];
1914 memcpy(fTranslation,v,kN3);
1915}
1916
1917////////////////////////////////////////////////////////////////////////////////
1918/// Rotate about Y axis with angle expressed in degrees.
1919
1921{
1922 if (!fRotation || !TestBit(kGeoMatrixOwned)) {
1924 else fRotation = new TGeoRotation();
1926 }
1928 const Double_t *rot = fRotation->GetRotationMatrix();
1929 Double_t phi = angle*TMath::DegToRad();
1930 Double_t c = TMath::Cos(phi);
1931 Double_t s = TMath::Sin(phi);
1932 Double_t v[9];
1933 v[0] = c*rot[0]+s*rot[6];
1934 v[1] = c*rot[1]+s*rot[7];
1935 v[2] = c*rot[2]+s*rot[8];
1936 v[3] = rot[3];
1937 v[4] = rot[4];
1938 v[5] = rot[5];
1939 v[6] = -s*rot[0]+c*rot[6];
1940 v[7] = -s*rot[1]+c*rot[7];
1941 v[8] = -s*rot[2]+c*rot[8];
1944 if (!IsTranslation()) return;
1945 v[0] = c*fTranslation[0]+s*fTranslation[2];
1946 v[1] = fTranslation[1];
1947 v[2] = -s*fTranslation[0]+c*fTranslation[2];
1948 memcpy(fTranslation,v,kN3);
1949}
1950
1951////////////////////////////////////////////////////////////////////////////////
1952/// Rotate about Z axis with angle expressed in degrees.
1953
1955{
1956 if (!fRotation || !TestBit(kGeoMatrixOwned)) {
1958 else fRotation = new TGeoRotation();
1960 }
1962 const Double_t *rot = fRotation->GetRotationMatrix();
1963 Double_t phi = angle*TMath::DegToRad();
1964 Double_t c = TMath::Cos(phi);
1965 Double_t s = TMath::Sin(phi);
1966 Double_t v[9];
1967 v[0] = c*rot[0]-s*rot[3];
1968 v[1] = c*rot[1]-s*rot[4];
1969 v[2] = c*rot[2]-s*rot[5];
1970 v[3] = s*rot[0]+c*rot[3];
1971 v[4] = s*rot[1]+c*rot[4];
1972 v[5] = s*rot[2]+c*rot[5];
1973 v[6] = rot[6];
1974 v[7] = rot[7];
1975 v[8] = rot[8];
1978 if (!IsTranslation()) return;
1979 v[0] = c*fTranslation[0]-s*fTranslation[1];
1980 v[1] = s*fTranslation[0]+c*fTranslation[1];
1981 v[2] = fTranslation[2];
1982 memcpy(fTranslation,v,kN3);
1983}
1984
1985////////////////////////////////////////////////////////////////////////////////
1986/// Multiply by a reflection respect to YZ.
1987
1989{
1990 if (leftside && !rotonly) fTranslation[0] = -fTranslation[0];
1991 if (!fRotation || !TestBit(kGeoMatrixOwned)) {
1993 else fRotation = new TGeoRotation();
1995 }
1997 fRotation->ReflectX(leftside);
1999}
2000
2001////////////////////////////////////////////////////////////////////////////////
2002/// Multiply by a reflection respect to ZX.
2003
2005{
2006 if (leftside && !rotonly) fTranslation[1] = -fTranslation[1];
2007 if (!fRotation || !TestBit(kGeoMatrixOwned)) {
2009 else fRotation = new TGeoRotation();
2011 }
2013 fRotation->ReflectY(leftside);
2015}
2016
2017////////////////////////////////////////////////////////////////////////////////
2018/// Multiply by a reflection respect to XY.
2019
2021{
2022 if (leftside && !rotonly) fTranslation[2] = -fTranslation[2];
2023 if (!fRotation || !TestBit(kGeoMatrixOwned)) {
2025 else fRotation = new TGeoRotation();
2027 }
2029 fRotation->ReflectZ(leftside);
2031}
2032
2033////////////////////////////////////////////////////////////////////////////////
2034/// Save a primitive as a C++ statement(s) on output stream "out".
2035
2036void TGeoCombiTrans::SavePrimitive(std::ostream &out, Option_t *option /*= ""*/)
2037{
2038 if (TestBit(kGeoSavePrimitive)) return;
2039 out << " // Combi transformation: " << GetName() << std::endl;
2040 out << " dx = " << fTranslation[0] << ";" << std::endl;
2041 out << " dy = " << fTranslation[1] << ";" << std::endl;
2042 out << " dz = " << fTranslation[2] << ";" << std::endl;
2043 if (fRotation && fRotation->IsRotation()) {
2044 fRotation->SavePrimitive(out,option);
2045 out << " " << GetPointerName() << " = new TGeoCombiTrans(\"" << GetName() << "\", dx,dy,dz,";
2046 out << fRotation->GetPointerName() << ");" << std::endl;
2047 } else {
2048 out << " " << GetPointerName() << " = new TGeoCombiTrans(\"" << GetName() << "\");" << std::endl;
2049 out << " " << GetPointerName() << "->SetTranslation(dx,dy,dz);" << std::endl;
2050 }
2052}
2053
2054////////////////////////////////////////////////////////////////////////////////
2055/// Assign a foreign rotation to the combi. The rotation is NOT owned by this.
2056
2058{
2060 fRotation = 0;
2064 if (!rot) return;
2065 if (!rot->IsRotation()) return;
2066
2069 TGeoRotation *rr = (TGeoRotation*)rot;
2070 fRotation = rr;
2071}
2072
2073////////////////////////////////////////////////////////////////////////////////
2074/// Copy the rotation from another one.
2075
2077{
2079 fRotation = 0;
2080 if (!rot.IsRotation()) {
2084 return;
2085 }
2086
2089 fRotation = new TGeoRotation(rot);
2091}
2092
2093////////////////////////////////////////////////////////////////////////////////
2094/// copy the translation component
2095
2097{
2098 if (tr.IsTranslation()) {
2100 const Double_t *trans = tr.GetTranslation();
2101 memcpy(fTranslation, trans, kN3);
2102 } else {
2103 if (!IsTranslation()) return;
2104 memset(fTranslation, 0, kN3);
2106 }
2107}
2108
2109////////////////////////////////////////////////////////////////////////////////
2110/// set the translation component
2111
2113{
2114 fTranslation[0] = dx;
2115 fTranslation[1] = dy;
2116 fTranslation[2] = dz;
2119}
2120
2121////////////////////////////////////////////////////////////////////////////////
2122/// set the translation component
2123
2125{
2126 fTranslation[0] = vect[0];
2127 fTranslation[1] = vect[1];
2128 fTranslation[2] = vect[2];
2131}
2132
2133////////////////////////////////////////////////////////////////////////////////
2134/// get the rotation array
2135
2137{
2138 if (!fRotation) return kIdentityMatrix;
2139 return fRotation->GetRotationMatrix();
2140}
2141
2142/** \class TGeoGenTrans
2143\ingroup Geometry_classes
2144Most general transformation, holding a translation, a rotation and a scale
2145*/
2146
2148
2149////////////////////////////////////////////////////////////////////////////////
2150/// dummy ctor
2151
2153{
2155 for (Int_t i=0; i<3; i++) fTranslation[i] = 0.0;
2156 for (Int_t j=0; j<3; j++) fScale[j] = 1.0;
2157 fRotation = 0;
2158}
2159
2160////////////////////////////////////////////////////////////////////////////////
2161/// constructor
2162
2165{
2167 for (Int_t i=0; i<3; i++) fTranslation[i] = 0.0;
2168 for (Int_t j=0; j<3; j++) fScale[j] = 1.0;
2169 fRotation = 0;
2170}
2171
2172////////////////////////////////////////////////////////////////////////////////
2173/// constructor
2174
2176 Double_t sx, Double_t sy, Double_t sz, TGeoRotation *rot)
2177 :TGeoCombiTrans("")
2178{
2180 SetTranslation(dx, dy, dz);
2181 SetScale(sx, sy, sz);
2182 SetRotation(rot);
2183}
2184
2185////////////////////////////////////////////////////////////////////////////////
2186/// constructor
2187
2189 Double_t sx, Double_t sy, Double_t sz, TGeoRotation *rot)
2191{
2193 SetTranslation(dx, dy, dz);
2194 SetScale(sx, sy, sz);
2195 SetRotation(rot);
2196}
2197
2198////////////////////////////////////////////////////////////////////////////////
2199/// destructor
2200
2202{
2203}
2204
2205////////////////////////////////////////////////////////////////////////////////
2206/// clear the fields of this transformation
2207
2209{
2210 memset(&fTranslation[0], 0, kN3);
2211 memset(&fScale[0], 0, kN3);
2212 if (fRotation) fRotation->Clear();
2213}
2214
2215////////////////////////////////////////////////////////////////////////////////
2216/// set the scale
2217
2219{
2220 if (sx<1.E-5 || sy<1.E-5 || sz<1.E-5) {
2221 Error("ctor", "Invalid scale");
2222 return;
2223 }
2224 fScale[0] = sx;
2225 fScale[1] = sy;
2226 fScale[2] = sz;
2227}
2228
2229////////////////////////////////////////////////////////////////////////////////
2230/// Return a temporary inverse of this.
2231
2233{
2234 TGeoHMatrix h = *this;
2235 return h;
2236}
2237
2238////////////////////////////////////////////////////////////////////////////////
2239/// A scale transformation should be normalized by sx*sy*sz factor
2240
2242{
2243 Double_t normfactor = fScale[0]*fScale[1]*fScale[2];
2244 if (normfactor <= 1E-5) return kFALSE;
2245 for (Int_t i=0; i<3; i++)
2246 fScale[i] /= normfactor;
2247 return kTRUE;
2248}
2249
2250/** \class TGeoIdentity
2251\ingroup Geometry_classes
2252An identity transformation. It holds no data member
2253and returns pointers to static null translation and identity
2254transformations for rotation and scale
2255*/
2256
2258
2259////////////////////////////////////////////////////////////////////////////////
2260/// dummy ctor
2261
2263{
2264 if (!gGeoIdentity) gGeoIdentity = this;
2266}
2267
2268////////////////////////////////////////////////////////////////////////////////
2269/// constructor
2270
2273{
2274 if (!gGeoIdentity) gGeoIdentity = this;
2276}
2277
2278////////////////////////////////////////////////////////////////////////////////
2279/// Return a temporary inverse of this.
2280
2282{
2284 return h;
2285}
2286
2287/** \class TGeoHMatrix
2288\ingroup Geometry_classes
2289
2290Matrix class used for computing global transformations
2291Should NOT be used for node definition. An instance of this class
2292is generally used to pile-up local transformations starting from
2293the top level physical node, down to the current node.
2294*/
2295
2297
2298////////////////////////////////////////////////////////////////////////////////
2299/// dummy ctor
2300
2302{
2303 memset(&fTranslation[0], 0, kN3);
2305 memcpy(fScale,kUnitScale,kN3);
2306}
2307
2308////////////////////////////////////////////////////////////////////////////////
2309/// constructor
2310
2313{
2314 memset(&fTranslation[0], 0, kN3);
2316 memcpy(fScale,kUnitScale,kN3);
2317}
2318
2319////////////////////////////////////////////////////////////////////////////////
2320/// assignment
2321
2323 :TGeoMatrix(matrix)
2324{
2325 memset(&fTranslation[0], 0, kN3);
2327 memcpy(fScale,kUnitScale,kN3);
2328 if (matrix.IsIdentity()) return;
2329 if (matrix.IsTranslation())
2331 if (matrix.IsRotation())
2332 memcpy(fRotationMatrix,matrix.GetRotationMatrix(),kN9);
2333 if (matrix.IsScale())
2334 memcpy(fScale,matrix.GetScale(),kN3);
2335}
2336
2337////////////////////////////////////////////////////////////////////////////////
2338/// destructor
2339
2341{
2342}
2343
2344////////////////////////////////////////////////////////////////////////////////
2345/// assignment
2346
2348{
2349 return TGeoHMatrix::operator=(*matrix);
2350}
2351
2352////////////////////////////////////////////////////////////////////////////////
2353/// assignment
2354
2356{
2357 if (&matrix == this) return *this;
2358 Clear();
2359 Bool_t registered = TestBit(kGeoRegistered);
2360 TNamed::operator=(matrix);
2361 if (matrix.IsIdentity()) return *this;
2362 if (matrix.IsTranslation())
2363 memcpy(fTranslation,matrix.GetTranslation(),kN3);
2364 if (matrix.IsRotation())
2365 memcpy(fRotationMatrix,matrix.GetRotationMatrix(),kN9);
2366 if (matrix.IsScale())
2367 memcpy(fScale,matrix.GetScale(),kN3);
2368 SetBit(kGeoRegistered,registered);
2369 return *this;
2370}
2371
2372////////////////////////////////////////////////////////////////////////////////
2373/// Composition
2374
2376{
2377 Multiply(&right);
2378 return *this;
2379}
2380
2382{
2383 TGeoHMatrix h = *this;
2384 h *= right;
2385 return h;
2386}
2387
2388////////////////////////////////////////////////////////////////////////////////
2389/// Is-equal operator
2390
2392{
2393 if (&other == this) return kTRUE;
2394 const Double_t *tr = GetTranslation();
2395 const Double_t *otr = other.GetTranslation();
2396 for (auto i=0; i<3; i++) if (TMath::Abs(tr[i]-otr[i])>1.E-10) return kFALSE;
2397 const Double_t *rot = GetRotationMatrix();
2398 const Double_t *orot = other.GetRotationMatrix();
2399 for (auto i=0; i<9; i++) if (TMath::Abs(rot[i]-orot[i])>1.E-10) return kFALSE;
2400 const Double_t *scl = GetScale();
2401 const Double_t *oscl = other.GetScale();
2402 for (auto i=0; i<3; i++) if (TMath::Abs(scl[i]-oscl[i])>1.E-10) return kFALSE;
2403 return kTRUE;
2404}
2405
2406////////////////////////////////////////////////////////////////////////////////
2407/// Fast copy method.
2408
2410{
2412 SetBit(kGeoRotation, other->IsRotation());
2414 memcpy(fTranslation,other->GetTranslation(),kN3);
2415 memcpy(fRotationMatrix,other->GetRotationMatrix(),kN9);
2416}
2417
2418////////////////////////////////////////////////////////////////////////////////
2419/// clear the data for this matrix
2420
2422{
2424 if (IsIdentity()) return;
2430 memcpy(fScale,kUnitScale,kN3);
2431}
2432
2433////////////////////////////////////////////////////////////////////////////////
2434/// Make a clone of this matrix.
2435
2437{
2438 TGeoMatrix *matrix = new TGeoHMatrix(*this);
2439 return matrix;
2440}
2441
2442////////////////////////////////////////////////////////////////////////////////
2443/// Perform a rotation about Z having the sine/cosine of the rotation angle.
2444
2446{
2447 fRotationMatrix[0] = sincos[1];
2448 fRotationMatrix[1] = -sincos[0];
2449 fRotationMatrix[3] = sincos[0];
2450 fRotationMatrix[4] = sincos[1];
2452}
2453
2454////////////////////////////////////////////////////////////////////////////////
2455/// Return a temporary inverse of this.
2456
2458{
2459 TGeoHMatrix h;
2460 h = *this;
2461 if (IsTranslation()) {
2462 Double_t tr[3];
2466 h.SetTranslation(tr);
2467 }
2468 if (IsRotation()) {
2469 Double_t newrot[9];
2470 newrot[0] = fRotationMatrix[0];
2471 newrot[1] = fRotationMatrix[3];
2472 newrot[2] = fRotationMatrix[6];
2473 newrot[3] = fRotationMatrix[1];
2474 newrot[4] = fRotationMatrix[4];
2475 newrot[5] = fRotationMatrix[7];
2476 newrot[6] = fRotationMatrix[2];
2477 newrot[7] = fRotationMatrix[5];
2478 newrot[8] = fRotationMatrix[8];
2479 h.SetRotation(newrot);
2480 }
2481 if (IsScale()) {
2482 Double_t sc[3];
2483 sc[0] = 1./fScale[0];
2484 sc[1] = 1./fScale[1];
2485 sc[2] = 1./fScale[2];
2486 h.SetScale(sc);
2487 }
2488 return h;
2489}
2490
2491////////////////////////////////////////////////////////////////////////////////
2492/// computes determinant of the rotation matrix
2493
2495{
2496 Double_t
2503 return det;
2504}
2505
2506////////////////////////////////////////////////////////////////////////////////
2507/// multiply to the right with an other transformation
2508/// if right is identity matrix, just return
2509
2511{
2512 if (right->IsIdentity()) return;
2513 const Double_t *r_tra = right->GetTranslation();
2514 const Double_t *r_rot = right->GetRotationMatrix();
2515 const Double_t *r_scl = right->GetScale();
2516 if (IsIdentity()) {
2517 if (right->IsRotation()) {
2519 memcpy(fRotationMatrix,r_rot,kN9);
2521 }
2522 if (right->IsScale()) {
2524 memcpy(fScale,r_scl,kN3);
2525 }
2526 if (right->IsTranslation()) {
2528 memcpy(fTranslation,r_tra,kN3);
2529 }
2530 return;
2531 }
2532 Int_t i, j;
2533 Double_t new_rot[9];
2534
2535 if (right->IsRotation()) {
2538 }
2539 if (right->IsScale()) SetBit(kGeoScale);
2540 if (right->IsTranslation()) SetBit(kGeoTranslation);
2541
2542 // new translation
2543 if (IsTranslation()) {
2544 for (i=0; i<3; i++) {
2545 fTranslation[i] += fRotationMatrix[3*i]*r_tra[0]
2546 + fRotationMatrix[3*i+1]*r_tra[1]
2547 + fRotationMatrix[3*i+2]*r_tra[2];
2548 }
2549 }
2550 if (IsRotation()) {
2551 // new rotation
2552 for (i=0; i<3; i++) {
2553 for (j=0; j<3; j++) {
2554 new_rot[3*i+j] = fRotationMatrix[3*i]*r_rot[j] +
2555 fRotationMatrix[3*i+1]*r_rot[3+j] +
2556 fRotationMatrix[3*i+2]*r_rot[6+j];
2557 }
2558 }
2559 memcpy(fRotationMatrix,new_rot,kN9);
2560 }
2561 // new scale
2562 if (IsScale()) {
2563 for (i=0; i<3; i++) fScale[i] *= r_scl[i];
2564 }
2565}
2566
2567////////////////////////////////////////////////////////////////////////////////
2568/// multiply to the left with an other transformation
2569/// if right is identity matrix, just return
2570
2572{
2573 if (left == gGeoIdentity) return;
2574 const Double_t *l_tra = left->GetTranslation();
2575 const Double_t *l_rot = left->GetRotationMatrix();
2576 const Double_t *l_scl = left->GetScale();
2577 if (IsIdentity()) {
2578 if (left->IsRotation()) {
2581 memcpy(fRotationMatrix,l_rot,kN9);
2582 }
2583 if (left->IsScale()) {
2585 memcpy(fScale,l_scl,kN3);
2586 }
2587 if (left->IsTranslation()) {
2589 memcpy(fTranslation,l_tra,kN3);
2590 }
2591 return;
2592 }
2593 Int_t i, j;
2594 Double_t new_tra[3];
2595 Double_t new_rot[9];
2596
2597 if (left->IsRotation()) {
2600 }
2601 if (left->IsScale()) SetBit(kGeoScale);
2602 if (left->IsTranslation()) SetBit(kGeoTranslation);
2603
2604 // new translation
2605 if (IsTranslation()) {
2606 for (i=0; i<3; i++) {
2607 new_tra[i] = l_tra[i]
2608 + l_rot[3*i]* fTranslation[0]
2609 + l_rot[3*i+1]*fTranslation[1]
2610 + l_rot[3*i+2]*fTranslation[2];
2611 }
2612 memcpy(fTranslation,new_tra,kN3);
2613 }
2614 if (IsRotation()) {
2615 // new rotation
2616 for (i=0; i<3; i++) {
2617 for (j=0; j<3; j++) {
2618 new_rot[3*i+j] = l_rot[3*i]*fRotationMatrix[j] +
2619 l_rot[3*i+1]*fRotationMatrix[3+j] +
2620 l_rot[3*i+2]*fRotationMatrix[6+j];
2621 }
2622 }
2623 memcpy(fRotationMatrix,new_rot,kN9);
2624 }
2625 // new scale
2626 if (IsScale()) {
2627 for (i=0; i<3; i++) fScale[i] *= l_scl[i];
2628 }
2629}
2630
2631////////////////////////////////////////////////////////////////////////////////
2632/// Rotate about X axis with angle expressed in degrees.
2633
2635{
2637 Double_t phi = angle*TMath::DegToRad();
2638 Double_t c = TMath::Cos(phi);
2639 Double_t s = TMath::Sin(phi);
2640 Double_t v[9];
2641 v[0] = fRotationMatrix[0];
2642 v[1] = fRotationMatrix[1];
2643 v[2] = fRotationMatrix[2];
2644 v[3] = c*fRotationMatrix[3]-s*fRotationMatrix[6];
2645 v[4] = c*fRotationMatrix[4]-s*fRotationMatrix[7];
2646 v[5] = c*fRotationMatrix[5]-s*fRotationMatrix[8];
2647 v[6] = s*fRotationMatrix[3]+c*fRotationMatrix[6];
2648 v[7] = s*fRotationMatrix[4]+c*fRotationMatrix[7];
2649 v[8] = s*fRotationMatrix[5]+c*fRotationMatrix[8];
2650 memcpy(fRotationMatrix, v, kN9);
2651
2652 v[0] = fTranslation[0];
2653 v[1] = c*fTranslation[1]-s*fTranslation[2];
2654 v[2] = s*fTranslation[1]+c*fTranslation[2];
2655 memcpy(fTranslation,v,kN3);
2656}
2657
2658////////////////////////////////////////////////////////////////////////////////
2659/// Rotate about Y axis with angle expressed in degrees.
2660
2662{
2664 Double_t phi = angle*TMath::DegToRad();
2665 Double_t c = TMath::Cos(phi);
2666 Double_t s = TMath::Sin(phi);
2667 Double_t v[9];
2668 v[0] = c*fRotationMatrix[0]+s*fRotationMatrix[6];
2669 v[1] = c*fRotationMatrix[1]+s*fRotationMatrix[7];
2670 v[2] = c*fRotationMatrix[2]+s*fRotationMatrix[8];
2671 v[3] = fRotationMatrix[3];
2672 v[4] = fRotationMatrix[4];
2673 v[5] = fRotationMatrix[5];
2674 v[6] = -s*fRotationMatrix[0]+c*fRotationMatrix[6];
2675 v[7] = -s*fRotationMatrix[1]+c*fRotationMatrix[7];
2676 v[8] = -s*fRotationMatrix[2]+c*fRotationMatrix[8];
2677 memcpy(fRotationMatrix, v, kN9);
2678
2679 v[0] = c*fTranslation[0]+s*fTranslation[2];
2680 v[1] = fTranslation[1];
2681 v[2] = -s*fTranslation[0]+c*fTranslation[2];
2682 memcpy(fTranslation,v,kN3);
2683}
2684
2685////////////////////////////////////////////////////////////////////////////////
2686/// Rotate about Z axis with angle expressed in degrees.
2687
2689{
2691 Double_t phi = angle*TMath::DegToRad();
2692 Double_t c = TMath::Cos(phi);
2693 Double_t s = TMath::Sin(phi);
2694 Double_t v[9];
2695 v[0] = c*fRotationMatrix[0]-s*fRotationMatrix[3];
2696 v[1] = c*fRotationMatrix[1]-s*fRotationMatrix[4];
2697 v[2] = c*fRotationMatrix[2]-s*fRotationMatrix[5];
2698 v[3] = s*fRotationMatrix[0]+c*fRotationMatrix[3];
2699 v[4] = s*fRotationMatrix[1]+c*fRotationMatrix[4];
2700 v[5] = s*fRotationMatrix[2]+c*fRotationMatrix[5];
2701 v[6] = fRotationMatrix[6];
2702 v[7] = fRotationMatrix[7];
2703 v[8] = fRotationMatrix[8];
2704 memcpy(&fRotationMatrix[0],v,kN9);
2705
2706 v[0] = c*fTranslation[0]-s*fTranslation[1];
2707 v[1] = s*fTranslation[0]+c*fTranslation[1];
2708 v[2] = fTranslation[2];
2709 memcpy(fTranslation,v,kN3);
2710}
2711
2712////////////////////////////////////////////////////////////////////////////////
2713/// Multiply by a reflection respect to YZ.
2714
2715void TGeoHMatrix::ReflectX(Bool_t leftside, Bool_t rotonly)
2716{
2717 if (leftside && !rotonly) fTranslation[0] = -fTranslation[0];
2718 if (leftside) {
2722 } else {
2726 }
2729}
2730
2731////////////////////////////////////////////////////////////////////////////////
2732/// Multiply by a reflection respect to ZX.
2733
2734void TGeoHMatrix::ReflectY(Bool_t leftside, Bool_t rotonly)
2735{
2736 if (leftside && !rotonly) fTranslation[1] = -fTranslation[1];
2737 if (leftside) {
2741 } else {
2745 }
2748}
2749
2750////////////////////////////////////////////////////////////////////////////////
2751/// Multiply by a reflection respect to XY.
2752
2753void TGeoHMatrix::ReflectZ(Bool_t leftside, Bool_t rotonly)
2754{
2755 if (leftside && !rotonly) fTranslation[2] = -fTranslation[2];
2756 if (leftside) {
2760 } else {
2764 }
2767}
2768
2769////////////////////////////////////////////////////////////////////////////////
2770/// Save a primitive as a C++ statement(s) on output stream "out".
2771
2772void TGeoHMatrix::SavePrimitive(std::ostream &out, Option_t * /*option*/ /*= ""*/)
2773{
2774 if (TestBit(kGeoSavePrimitive)) return;
2775 const Double_t *tr = fTranslation;
2776 const Double_t *rot = fRotationMatrix;
2777 out << " // HMatrix: " << GetName() << std::endl;
2778 out << " tr[0] = " << tr[0] << "; " << "tr[1] = " << tr[1] << "; " << "tr[2] = " << tr[2] << ";" << std::endl;
2779 out << " rot[0] =" << rot[0] << "; " << "rot[1] = " << rot[1] << "; " << "rot[2] = " << rot[2] << ";" << std::endl;
2780 out << " rot[3] =" << rot[3] << "; " << "rot[4] = " << rot[4] << "; " << "rot[5] = " << rot[5] << ";" << std::endl;
2781 out << " rot[6] =" << rot[6] << "; " << "rot[7] = " << rot[7] << "; " << "rot[8] = " << rot[8] << ";" << std::endl;
2782 char *name = GetPointerName();
2783 out << " TGeoHMatrix *" << name << " = new TGeoHMatrix(\"" << GetName() << "\");" << std::endl;
2784 out << " " << name << "->SetTranslation(tr);" << std::endl;
2785 out << " " << name << "->SetRotation(rot);" << std::endl;
2786 if (IsTranslation()) out << " " << name << "->SetBit(TGeoMatrix::kGeoTranslation);" << std::endl;
2787 if (IsRotation()) out << " " << name << "->SetBit(TGeoMatrix::kGeoRotation);" << std::endl;
2788 if (IsReflection()) out << " " << name << "->SetBit(TGeoMatrix::kGeoReflection);" << std::endl;
2790}
ROOT::R::TRInterface & r
Definition: Object.C:4
#define c(i)
Definition: RSha256.hxx:101
#define h(i)
Definition: RSha256.hxx:106
int Int_t
Definition: RtypesCore.h:43
const Bool_t kFALSE
Definition: RtypesCore.h:90
double Double_t
Definition: RtypesCore.h:57
const Bool_t kTRUE
Definition: RtypesCore.h:89
const char Option_t
Definition: RtypesCore.h:64
#define ClassImp(name)
Definition: Rtypes.h:361
char name[80]
Definition: TGX11.cxx:109
int type
Definition: TGX11.cxx:120
R__EXTERN TGeoManager * gGeoManager
Definition: TGeoManager.h:600
const Int_t kN3
Definition: TGeoMatrix.cxx:221
TGeoIdentity * gGeoIdentity
Definition: TGeoMatrix.cxx:220
const Int_t kN9
Definition: TGeoMatrix.cxx:222
const Double_t kUnitScale[3]
Definition: TGeoMatrix.h:30
const Double_t kIdentityMatrix[3 *3]
Definition: TGeoMatrix.h:26
const Double_t kNullVector[3]
Definition: TGeoMatrix.h:24
Class describing rotation + translation.
Definition: TGeoMatrix.h:292
void Multiply(const TGeoMatrix *right)
multiply to the right with an other transformation if right is identity matrix, just return
virtual void ReflectZ(Bool_t leftside, Bool_t rotonly=kFALSE)
Multiply by a reflection respect to XY.
TGeoCombiTrans & operator*=(const TGeoMatrix &other)
Composition.
Bool_t operator==(const TGeoMatrix &other) const
Is-equal operator.
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save a primitive as a C++ statement(s) on output stream "out".
virtual const Double_t * GetTranslation() const
Definition: TGeoMatrix.h:336
TGeoCombiTrans()
dummy ctor
virtual TGeoMatrix * MakeClone() const
Make a clone of this matrix.
virtual ~TGeoCombiTrans()
destructor
virtual const Double_t * GetRotationMatrix() const
get the rotation array
virtual void RotateZ(Double_t angle)
Rotate about Z axis with angle expressed in degrees.
Double_t fTranslation[3]
Definition: TGeoMatrix.h:294
virtual void RegisterYourself()
Register the matrix in the current manager, which will become the owner.
TGeoRotation * fRotation
Definition: TGeoMatrix.h:295
void SetTranslation(const TGeoTranslation &tr)
copy the translation component
void SetRotation(const TGeoRotation &other)
Copy the rotation from another one.
virtual void ReflectX(Bool_t leftside, Bool_t rotonly=kFALSE)
Multiply by a reflection respect to YZ.
TGeoCombiTrans & operator=(const TGeoCombiTrans &other)
Definition: TGeoMatrix.h:305
virtual void ReflectY(Bool_t leftside, Bool_t rotonly=kFALSE)
Multiply by a reflection respect to ZX.
TGeoHMatrix Inverse() const
Return a temporary inverse of this.
TGeoCombiTrans operator*(const TGeoMatrix &other) const
void Clear(Option_t *option="")
Reset translation/rotation to identity.
virtual void RotateY(Double_t angle)
Rotate about Y axis with angle expressed in degrees.
virtual void RotateX(Double_t angle)
Rotate about X axis with angle expressed in degrees.
Most general transformation, holding a translation, a rotation and a scale.
Definition: TGeoMatrix.h:351
virtual ~TGeoGenTrans()
destructor
Double_t fScale[3]
Definition: TGeoMatrix.h:353
void Clear(Option_t *option="")
clear the fields of this transformation
Bool_t Normalize()
A scale transformation should be normalized by sx*sy*sz factor.
TGeoGenTrans()
dummy ctor
void SetScale(Double_t sx, Double_t sy, Double_t sz)
set the scale
TGeoHMatrix Inverse() const
Return a temporary inverse of this.
Matrix class used for computing global transformations Should NOT be used for node definition.
Definition: TGeoMatrix.h:421
TGeoHMatrix & operator*=(const TGeoMatrix &other)
Composition.
TGeoHMatrix()
dummy ctor
virtual void RotateX(Double_t angle)
Rotate about X axis with angle expressed in degrees.
virtual void RotateZ(Double_t angle)
Rotate about Z axis with angle expressed in degrees.
void MultiplyLeft(const TGeoMatrix *left)
multiply to the left with an other transformation if right is identity matrix, just return
virtual ~TGeoHMatrix()
destructor
Double_t Determinant() const
computes determinant of the rotation matrix
virtual void ReflectY(Bool_t leftside, Bool_t rotonly=kFALSE)
Multiply by a reflection respect to ZX.
void Clear(Option_t *option="")
clear the data for this matrix
void CopyFrom(const TGeoMatrix *other)
Fast copy method.
void FastRotZ(const Double_t *sincos)
Perform a rotation about Z having the sine/cosine of the rotation angle.
Double_t fTranslation[3]
Definition: TGeoMatrix.h:423
Bool_t operator==(const TGeoMatrix &other) const
Is-equal operator.
TGeoHMatrix Inverse() const
Return a temporary inverse of this.
virtual const Double_t * GetScale() const
Definition: TGeoMatrix.h:469
Double_t fRotationMatrix[9]
Definition: TGeoMatrix.h:424
virtual const Double_t * GetTranslation() const
Definition: TGeoMatrix.h:467
virtual TGeoMatrix * MakeClone() const
Make a clone of this matrix.
virtual void RotateY(Double_t angle)
Rotate about Y axis with angle expressed in degrees.
TGeoHMatrix & operator=(const TGeoHMatrix &other)
Definition: TGeoMatrix.h:434
void Multiply(const TGeoMatrix *right)
multiply to the right with an other transformation if right is identity matrix, just return
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save a primitive as a C++ statement(s) on output stream "out".
TGeoHMatrix operator*(const TGeoMatrix &other) const
void SetTranslation(const Double_t *vect)
Definition: TGeoMatrix.h:462
Double_t fScale[3]
Definition: TGeoMatrix.h:425
virtual const Double_t * GetRotationMatrix() const
Definition: TGeoMatrix.h:468
virtual void ReflectX(Bool_t leftside, Bool_t rotonly=kFALSE)
Multiply by a reflection respect to YZ.
virtual void ReflectZ(Bool_t leftside, Bool_t rotonly=kFALSE)
Multiply by a reflection respect to XY.
An identity transformation.
Definition: TGeoMatrix.h:384
TGeoHMatrix Inverse() const
Return a temporary inverse of this.
TGeoIdentity()
dummy ctor
TObjArray * GetListOfMatrices() const
Definition: TGeoManager.h:488
void RegisterMatrix(const TGeoMatrix *matrix)
Register a matrix to the list of matrices.
void BombTranslation(const Double_t *tr, Double_t *bombtr)
Get the new 'bombed' translation vector according current exploded view mode.
void UnbombTranslation(const Double_t *tr, Double_t *bombtr)
Get the new 'unbombed' translation vector according current exploded view mode.
Bool_t IsCleaning() const
Definition: TGeoManager.h:482
Geometrical transformation package.
Definition: TGeoMatrix.h:41
virtual void LocalToMasterVect(const Double_t *local, Double_t *master) const
convert a vector by multiplying its column vector (x, y, z, 1) to matrix inverse
Definition: TGeoMatrix.cxx:363
Bool_t IsScale() const
Definition: TGeoMatrix.h:70
void SetDefaultName()
If no name was supplied in the ctor, the type of transformation is checked.
Definition: TGeoMatrix.cxx:549
Bool_t IsGeneral() const
Definition: TGeoMatrix.h:75
@ kGeoMatrixBits
Definition: TGeoMatrix.h:55
@ kGeoSavePrimitive
Definition: TGeoMatrix.h:51
@ kGeoTranslation
Definition: TGeoMatrix.h:46
@ kGeoReflection
Definition: TGeoMatrix.h:49
@ kGeoRotation
Definition: TGeoMatrix.h:47
@ kGeoGenTrans
Definition: TGeoMatrix.h:54
@ kGeoMatrixOwned
Definition: TGeoMatrix.h:52
@ kGeoRegistered
Definition: TGeoMatrix.h:50
virtual void MasterToLocal(const Double_t *master, Double_t *local) const
convert a point by multiplying its column vector (x, y, z, 1) to matrix
Definition: TGeoMatrix.cxx:406
virtual void MasterToLocalVect(const Double_t *master, Double_t *local) const
convert a point by multiplying its column vector (x, y, z, 1) to matrix
Definition: TGeoMatrix.cxx:431
virtual void ReflectZ(Bool_t leftside, Bool_t rotonly=kFALSE)
Multiply by a reflection respect to XY.
Definition: TGeoMatrix.cxx:519
virtual const Double_t * GetTranslation() const =0
Bool_t IsTranslation() const
Definition: TGeoMatrix.h:67
Bool_t IsReflection() const
Definition: TGeoMatrix.h:69
Bool_t IsRotation() const
Definition: TGeoMatrix.h:68
virtual void LocalToMasterBomb(const Double_t *local, Double_t *master) const
convert a point by multiplying its column vector (x, y, z, 1) to matrix inverse
Definition: TGeoMatrix.cxx:380
virtual void RegisterYourself()
Register the matrix in the current manager, which will become the owner.
Definition: TGeoMatrix.cxx:526
virtual void LocalToMaster(const Double_t *local, Double_t *master) const
convert a point by multiplying its column vector (x, y, z, 1) to matrix inverse
Definition: TGeoMatrix.cxx:339
virtual void MasterToLocalBomb(const Double_t *master, Double_t *local) const
convert a point by multiplying its column vector (x, y, z, 1) to matrix
Definition: TGeoMatrix.cxx:448
Bool_t IsRotAboutZ() const
Returns true if no rotation or the rotation is about Z axis.
Definition: TGeoMatrix.cxx:269
void GetHomogenousMatrix(Double_t *hmat) const
The homogenous matrix associated with the transformation is used for piling up's and visualization.
Definition: TGeoMatrix.cxx:314
TGeoMatrix()
dummy constructor
Definition: TGeoMatrix.cxx:231
Bool_t IsOwned() const
Definition: TGeoMatrix.h:72
virtual const Double_t * GetScale() const =0
static void Normalize(Double_t *vect)
Normalize a vector.
Definition: TGeoMatrix.cxx:473
void Print(Option_t *option="") const
print the matrix in 4x4 format
Definition: TGeoMatrix.cxx:486
Bool_t IsIdentity() const
Definition: TGeoMatrix.h:66
Bool_t IsCombi() const
Definition: TGeoMatrix.h:73
Bool_t IsRegistered() const
Definition: TGeoMatrix.h:77
virtual ~TGeoMatrix()
Destructor.
Definition: TGeoMatrix.cxx:256
Bool_t IsShared() const
Definition: TGeoMatrix.h:71
virtual const Double_t * GetRotationMatrix() const =0
virtual Int_t GetByteCount() const
Get total size in bytes of this.
Definition: TGeoMatrix.cxx:282
virtual void ReflectY(Bool_t leftside, Bool_t rotonly=kFALSE)
Multiply by a reflection respect to ZX.
Definition: TGeoMatrix.cxx:512
virtual void ReflectX(Bool_t leftside, Bool_t rotonly=kFALSE)
Multiply by a reflection respect to YZ.
Definition: TGeoMatrix.cxx:505
char * GetPointerName() const
Provide a pointer name containing uid.
Definition: TGeoMatrix.cxx:294
Class describing rotations.
Definition: TGeoMatrix.h:175
virtual void RotateY(Double_t angle)
Rotate about Y axis of the master frame with angle expressed in degrees.
virtual void ReflectX(Bool_t leftside, Bool_t rotonly=kFALSE)
Multiply by a reflection respect to YZ.
TGeoRotation()
Default constructor.
Definition: TGeoMatrix.cxx:854
virtual void ReflectZ(Bool_t leftside, Bool_t rotonly=kFALSE)
Multiply by a reflection respect to XY.
virtual void LocalToMaster(const Double_t *local, Double_t *master) const
convert a point by multiplying its column vector (x, y, z, 1) to matrix inverse
void SetAngles(Double_t phi, Double_t theta, Double_t psi)
Set matrix elements according to Euler angles.
void Clear(Option_t *option="")
reset data members
virtual const Double_t * GetRotationMatrix() const
Definition: TGeoMatrix.h:230
void MultiplyBy(const TGeoRotation *rot, Bool_t after=kTRUE)
Multiply this rotation with the one specified by ROT.
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save a primitive as a C++ statement(s) on output stream "out".
Bool_t operator==(const TGeoRotation &other) const
Is-equal operator.
Definition: TGeoMatrix.cxx:963
void SetMatrix(const Double_t *rot)
Definition: TGeoMatrix.h:225
virtual TGeoMatrix * MakeClone() const
Make a clone of this matrix.
virtual void ReflectY(Bool_t leftside, Bool_t rotonly=kFALSE)
Multiply by a reflection respect to ZX.
TGeoRotation & operator*=(const TGeoRotation &other)
Composition.
Definition: TGeoMatrix.cxx:939
virtual void MasterToLocal(const Double_t *master, Double_t *local) const
convert a point by multiplying its column vector (x, y, z, 1) to matrix
virtual void RotateX(Double_t angle)
Rotate about X axis of the master frame with angle expressed in degrees.
void CheckMatrix()
performes an orthogonality check and finds if the matrix is a reflection Warning("CheckMatrix",...
TGeoHMatrix Inverse() const
Return a temporary inverse of this.
Definition: TGeoMatrix.cxx:976
Double_t GetPhiRotation(Bool_t fixX=kFALSE) const
Returns rotation angle about Z axis in degrees.
void FastRotZ(const Double_t *sincos)
Perform a rotation about Z having the sine/cosine of the rotation angle.
void GetInverse(Double_t *invmat) const
Get the inverse rotation matrix (which is simply the transpose)
Double_t Determinant() const
computes determinant of the rotation matrix
void GetAngles(Double_t &theta1, Double_t &phi1, Double_t &theta2, Double_t &phi2, Double_t &theta3, Double_t &phi3) const
Retrieve rotation angles.
Bool_t IsValid() const
Perform orthogonality test for rotation.
Definition: TGeoMatrix.cxx:997
virtual void RotateZ(Double_t angle)
Rotate about Z axis of the master frame with angle expressed in degrees.
TGeoRotation operator*(const TGeoRotation &other) const
Definition: TGeoMatrix.cxx:946
Double_t fRotationMatrix[3 *3]
Definition: TGeoMatrix.h:177
void SetRotation(const TGeoMatrix &other)
Copy rotation elements from other rotation matrix.
TGeoRotation & operator=(const TGeoRotation &other)
Definition: TGeoMatrix.h:191
Class describing scale transformations.
Definition: TGeoMatrix.h:245
virtual void MasterToLocal(const Double_t *master, Double_t *local) const
Convert a global point to local frame.
TGeoScale()
default constructor
TGeoScale & operator=(const TGeoScale &other)
Definition: TGeoMatrix.h:256
Bool_t operator==(const TGeoScale &other) const
Is-equal operator.
void SetScale(Double_t sx, Double_t sy, Double_t sz)
scale setter
TGeoHMatrix Inverse() const
Return a temporary inverse of this.
virtual ~TGeoScale()
destructor
Double_t fScale[3]
Definition: TGeoMatrix.h:247
virtual void LocalToMaster(const Double_t *local, Double_t *master) const
Convert a local point to the master frame.
virtual const Double_t * GetScale() const
Definition: TGeoMatrix.h:279
TGeoScale operator*(const TGeoScale &other) const
TGeoScale & operator*=(const TGeoScale &other)
Scale composition.
virtual TGeoMatrix * MakeClone() const
Make a clone of this matrix.
Class describing translations.
Definition: TGeoMatrix.h:122
virtual const Double_t * GetTranslation() const
Definition: TGeoMatrix.h:160
Bool_t operator==(const TGeoTranslation &other) const
Is-equal operator.
Definition: TGeoMatrix.cxx:669
TGeoTranslation & operator*=(const TGeoTranslation &other)
Translation composition.
Definition: TGeoMatrix.cxx:642
virtual void MasterToLocalBomb(const Double_t *master, Double_t *local) const
convert a point by multiplying its column vector (x, y, z, 1) to matrix
Definition: TGeoMatrix.cxx:820
virtual void RotateX(Double_t angle)
Rotate about X axis of the master frame with angle expressed in degrees.
Definition: TGeoMatrix.cxx:716
TGeoTranslation operator*(const TGeoTranslation &right) const
Definition: TGeoMatrix.cxx:652
void Add(const TGeoTranslation *other)
Adding a translation to this one.
Definition: TGeoMatrix.cxx:697
virtual void LocalToMasterBomb(const Double_t *local, Double_t *master) const
convert a point by multiplying its column vector (x, y, z, 1) to matrix inverse
Definition: TGeoMatrix.cxx:790
virtual void LocalToMasterVect(const Double_t *local, Double_t *master) const
convert a vector to MARS
Definition: TGeoMatrix.cxx:782
virtual void RotateZ(Double_t angle)
Rotate about Z axis of the master frame with angle expressed in degrees.
Definition: TGeoMatrix.cxx:732
virtual void MasterToLocalVect(const Double_t *master, Double_t *local) const
convert a vector from MARS to local
Definition: TGeoMatrix.cxx:812
virtual void RotateY(Double_t angle)
Rotate about Y axis of the master frame with angle expressed in degrees.
Definition: TGeoMatrix.cxx:724
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save a primitive as a C++ statement(s) on output stream "out".
Definition: TGeoMatrix.cxx:832
void SetTranslation(Double_t dx, Double_t dy, Double_t dz)
Set translation components.
Definition: TGeoMatrix.cxx:750
TGeoTranslation & operator=(const TGeoTranslation &other)
Definition: TGeoMatrix.h:133
Double_t fTranslation[3]
Definition: TGeoMatrix.h:124
virtual void LocalToMaster(const Double_t *local, Double_t *master) const
convert a point by multiplying its column vector (x, y, z, 1) to matrix inverse
Definition: TGeoMatrix.cxx:772
TGeoHMatrix Inverse() const
Return a temporary inverse of this.
Definition: TGeoMatrix.cxx:682
virtual TGeoMatrix * MakeClone() const
Make a clone of this matrix.
Definition: TGeoMatrix.cxx:707
TGeoTranslation()
Default constructor.
Definition: TGeoMatrix.cxx:579
void Subtract(const TGeoTranslation *other)
Subtracting a translation from this one.
Definition: TGeoMatrix.cxx:740
virtual void MasterToLocal(const Double_t *master, Double_t *local) const
convert a point by multiplying its column vector (x, y, z, 1) to matrix
Definition: TGeoMatrix.cxx:802
The TNamed class is the base class for all named ROOT classes.
Definition: TNamed.h:29
virtual void SetName(const char *name)
Set the name of the TNamed.
Definition: TNamed.cxx:140
virtual const char * GetTitle() const
Returns title of object.
Definition: TNamed.h:48
TNamed & operator=(const TNamed &rhs)
TNamed assignment operator.
Definition: TNamed.cxx:51
virtual const char * GetName() const
Returns name of object.
Definition: TNamed.h:47
An array of TObjects.
Definition: TObjArray.h:37
Int_t GetEntriesFast() const
Definition: TObjArray.h:64
virtual TObject * Remove(TObject *obj)
Remove object from array.
Definition: TObjArray.cxx:719
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
Definition: TObject.h:187
virtual UInt_t GetUniqueID() const
Return the unique object id.
Definition: TObject.cxx:375
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
Definition: TObject.cxx:877
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
Definition: TObject.cxx:694
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Definition: TObject.cxx:891
void ResetBit(UInt_t f)
Definition: TObject.h:186
Basic string class.
Definition: TString.h:131
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
Definition: TString.cxx:2311
double dist(Rotation3D const &r1, Rotation3D const &r2)
Definition: 3DDistances.cxx:48
static constexpr double s
Double_t ACos(Double_t)
Definition: TMath.h:658
Double_t ASin(Double_t)
Definition: TMath.h:651
Double_t ATan2(Double_t y, Double_t x)
Definition: TMath.h:669
constexpr Double_t E()
Base of natural log:
Definition: TMath.h:97
constexpr Double_t DegToRad()
Conversion from degree to radian:
Definition: TMath.h:82
Double_t Sqrt(Double_t x)
Definition: TMath.h:681
Double_t Cos(Double_t)
Definition: TMath.h:631
constexpr Double_t Pi()
Definition: TMath.h:38
Double_t Sin(Double_t)
Definition: TMath.h:627
constexpr Double_t RadToDeg()
Conversion from radian to degree:
Definition: TMath.h:74
Short_t Abs(Short_t d)
Definition: TMathBase.h:120
auto * th3
Definition: textalign.C:21
auto * th2
Definition: textalign.C:17
auto * th1
Definition: textalign.C:13
auto * m
Definition: textangle.C:8