Logo ROOT  
Reference Guide
TGeoCone.cxx
Go to the documentation of this file.
1// @(#)root/geom:$Id$
2// Author: Andrei Gheata 31/01/02
3// TGeoCone::Contains() and DistFromInside() implemented by Mihaela Gheata
4
5/*************************************************************************
6 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
7 * All rights reserved. *
8 * *
9 * For the licensing terms see $ROOTSYS/LICENSE. *
10 * For the list of contributors see $ROOTSYS/README/CREDITS. *
11 *************************************************************************/
12
13/** \class TGeoCone
14\ingroup Geometry_classes
15
16Conical tube class. It has 5 parameters :
17 - dz - half length in z
18 - Rmin1, Rmax1 - inside and outside radii at -dz
19 - Rmin2, Rmax2 - inside and outside radii at +dz
20
21Begin_Macro(source)
22{
23 TCanvas *c = new TCanvas("c", "c",0,0,600,600);
24 new TGeoManager("cone", "poza4");
25 TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
26 TGeoMedium *med = new TGeoMedium("MED",1,mat);
27 TGeoVolume *top = gGeoManager->MakeBox("TOP",med,100,100,100);
28 gGeoManager->SetTopVolume(top);
29 TGeoVolume *vol = gGeoManager->MakeCone("CONE",med, 40,10,20,35,45);
30 vol->SetLineWidth(2);
31 top->AddNode(vol,1);
32 gGeoManager->CloseGeometry();
33 gGeoManager->SetNsegments(30);
34 top->Draw();
35 TView *view = gPad->GetView();
36 view->ShowAxis();
37}
38End_Macro
39*/
40
41
42/** \class TGeoConeSeg
43\ingroup Geometry_classes
44
45A phi segment of a conical tube. Has 7 parameters :
46 - the same 5 as a cone;
47 - first phi limit (in degrees)
48 - second phi limit
49
50Begin_Macro(source)
51{
52 TCanvas *c = new TCanvas("c", "c",0,0,600,600);
53 new TGeoManager("coneseg", "poza5");
54 TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
55 TGeoMedium *med = new TGeoMedium("MED",1,mat);
56 TGeoVolume *top = gGeoManager->MakeBox("TOP",med,100,100,100);
57 gGeoManager->SetTopVolume(top);
58 TGeoVolume *vol = gGeoManager->MakeCons("CONESEG",med, 40,30,40,10,20,-30,250);
59 top->AddNode(vol,1);
60 gGeoManager->CloseGeometry();
61 gGeoManager->SetNsegments(30);
62 top->Draw();
63 TView *view = gPad->GetView();
64 view->ShowAxis();
65}
66End_Macro
67*/
68
69#include "Riostream.h"
70
71#include "TGeoManager.h"
72#include "TGeoVolume.h"
73#include "TVirtualGeoPainter.h"
74#include "TGeoCone.h"
75#include "TVirtualPad.h"
76#include "TBuffer3D.h"
77#include "TBuffer3DTypes.h"
78#include "TMath.h"
79
81
82////////////////////////////////////////////////////////////////////////////////
83/// Default constructor
84
86{
88 fDz = 0.0;
89 fRmin1 = 0.0;
90 fRmax1 = 0.0;
91 fRmin2 = 0.0;
92 fRmax2 = 0.0;
93}
94
95////////////////////////////////////////////////////////////////////////////////
96/// Default constructor specifying minimum and maximum radius
97
99 Double_t rmin2, Double_t rmax2)
100 :TGeoBBox(0, 0, 0)
101{
103 SetConeDimensions(dz, rmin1, rmax1, rmin2, rmax2);
104 if ((dz<0) || (rmin1<0) || (rmax1<0) || (rmin2<0) || (rmax2<0)) {
106 }
107 else ComputeBBox();
108}
109
110////////////////////////////////////////////////////////////////////////////////
111/// Default constructor specifying minimum and maximum radius
112
113TGeoCone::TGeoCone(const char *name, Double_t dz, Double_t rmin1, Double_t rmax1,
114 Double_t rmin2, Double_t rmax2)
115 :TGeoBBox(name, 0, 0, 0)
116{
118 SetConeDimensions(dz, rmin1, rmax1, rmin2, rmax2);
119 if ((dz<0) || (rmin1<0) || (rmax1<0) || (rmin2<0) || (rmax2<0)) {
121 }
122 else ComputeBBox();
123}
124
125////////////////////////////////////////////////////////////////////////////////
126/// Default constructor specifying minimum and maximum radius
127/// - param[0] = dz
128/// - param[1] = Rmin1
129/// - param[2] = Rmax1
130/// - param[3] = Rmin2
131/// - param[4] = Rmax2
132
134 :TGeoBBox(0, 0, 0)
135{
137 SetDimensions(param);
138 if ((fDz<0) || (fRmin1<0) || (fRmax1<0) || (fRmin2<0) || (fRmax2<0))
140 else ComputeBBox();
141}
142
143////////////////////////////////////////////////////////////////////////////////
144/// Computes capacity of the shape in [length^3]
145
147{
149}
150
151////////////////////////////////////////////////////////////////////////////////
152/// Computes capacity of the shape in [length^3]
153
155{
156 Double_t capacity = (2.*dz*TMath::Pi()/3.)*(rmax1*rmax1+rmax2*rmax2+rmax1*rmax2-
157 rmin1*rmin1-rmin2*rmin2-rmin1*rmin2);
158 return capacity;
159}
160
161////////////////////////////////////////////////////////////////////////////////
162/// destructor
163
165{
166}
167
168////////////////////////////////////////////////////////////////////////////////
169/// compute bounding box of the sphere
170
172{
173 TGeoBBox *box = (TGeoBBox*)this;
174 box->SetBoxDimensions(TMath::Max(fRmax1, fRmax2), TMath::Max(fRmax1, fRmax2), fDz);
175 memset(fOrigin, 0, 3*sizeof(Double_t));
176}
177
178////////////////////////////////////////////////////////////////////////////////
179/// Compute normal to closest surface from POINT.
180
181void TGeoCone::ComputeNormal(const Double_t *point, const Double_t *dir, Double_t *norm)
182{
183 Double_t safr,safe,phi;
184 memset(norm,0,3*sizeof(Double_t));
185 phi = TMath::ATan2(point[1],point[0]);
186 Double_t cphi = TMath::Cos(phi);
187 Double_t sphi = TMath::Sin(phi);
188 Double_t ro1 = 0.5*(fRmin1+fRmin2);
189 Double_t tg1 = 0.5*(fRmin2-fRmin1)/fDz;
190 Double_t cr1 = 1./TMath::Sqrt(1.+tg1*tg1);
191 Double_t ro2 = 0.5*(fRmax1+fRmax2);
192 Double_t tg2 = 0.5*(fRmax2-fRmax1)/fDz;
193 Double_t cr2 = 1./TMath::Sqrt(1.+tg2*tg2);
194
195 Double_t r=TMath::Sqrt(point[0]*point[0]+point[1]*point[1]);
196 Double_t rin = tg1*point[2]+ro1;
197 Double_t rout = tg2*point[2]+ro2;
198 safe = TMath::Abs(fDz-TMath::Abs(point[2]));
199 norm[2] = 1;
200
201 safr = (ro1>0)?(TMath::Abs((r-rin)*cr1)):TGeoShape::Big();
202 if (safr<safe) {
203 safe = safr;
204 norm[0] = cr1*cphi;
205 norm[1] = cr1*sphi;
206 norm[2] = -tg1*cr1;
207 }
208 safr = TMath::Abs((rout-r)*cr2);
209 if (safr<safe) {
210 norm[0] = cr2*cphi;
211 norm[1] = cr2*sphi;
212 norm[2] = -tg2*cr2;
213 }
214 if (norm[0]*dir[0]+norm[1]*dir[1]+norm[2]*dir[2]<0) {
215 norm[0] = -norm[0];
216 norm[1] = -norm[1];
217 norm[2] = -norm[2];
218 }
219}
220
221////////////////////////////////////////////////////////////////////////////////
222/// Compute normal to closest surface from POINT.
223
224void TGeoCone::ComputeNormalS(const Double_t *point, const Double_t *dir, Double_t *norm,
225 Double_t dz, Double_t rmin1, Double_t rmax1, Double_t rmin2, Double_t rmax2)
226{
227 Double_t safe,phi;
228 memset(norm,0,3*sizeof(Double_t));
229 phi = TMath::ATan2(point[1],point[0]);
230 Double_t cphi = TMath::Cos(phi);
231 Double_t sphi = TMath::Sin(phi);
232 Double_t ro1 = 0.5*(rmin1+rmin2);
233 Double_t tg1 = 0.5*(rmin2-rmin1)/dz;
234 Double_t cr1 = 1./TMath::Sqrt(1.+tg1*tg1);
235 Double_t ro2 = 0.5*(rmax1+rmax2);
236 Double_t tg2 = 0.5*(rmax2-rmax1)/dz;
237 Double_t cr2 = 1./TMath::Sqrt(1.+tg2*tg2);
238
239 Double_t r=TMath::Sqrt(point[0]*point[0]+point[1]*point[1]);
240 Double_t rin = tg1*point[2]+ro1;
241 Double_t rout = tg2*point[2]+ro2;
242 safe = (ro1>0)?(TMath::Abs((r-rin)*cr1)):TGeoShape::Big();
243 norm[0] = cr1*cphi;
244 norm[1] = cr1*sphi;
245 norm[2] = -tg1*cr1;
246 if (TMath::Abs((rout-r)*cr2)<safe) {
247 norm[0] = cr2*cphi;
248 norm[1] = cr2*sphi;
249 norm[2] = -tg2*cr2;
250 }
251 if (norm[0]*dir[0]+norm[1]*dir[1]+norm[2]*dir[2]<0) {
252 norm[0] = -norm[0];
253 norm[1] = -norm[1];
254 norm[2] = -norm[2];
255 }
256}
257
258////////////////////////////////////////////////////////////////////////////////
259/// test if point is inside this cone
260
262{
263 if (TMath::Abs(point[2]) > fDz) return kFALSE;
264 Double_t r2 = point[0]*point[0]+point[1]*point[1];
265 Double_t rl = 0.5*(fRmin2*(point[2]+fDz)+fRmin1*(fDz-point[2]))/fDz;
266 Double_t rh = 0.5*(fRmax2*(point[2]+fDz)+fRmax1*(fDz-point[2]))/fDz;
267 if ((r2<rl*rl) || (r2>rh*rh)) return kFALSE;
268 return kTRUE;
269}
270
271////////////////////////////////////////////////////////////////////////////////
272/// Compute distance from inside point to surface of the cone (static)
273/// Boundary safe algorithm.
274
276 Double_t rmin1, Double_t rmax1, Double_t rmin2, Double_t rmax2)
277{
278 if (dz<=0) return TGeoShape::Big();
279 // compute distance to surface
280 // Do Z
282 if (dir[2]) {
283 sz = (TMath::Sign(dz, dir[2])-point[2])/dir[2];
284 if (sz<=0) return 0.0;
285 }
286 Double_t rsq=point[0]*point[0]+point[1]*point[1];
287 Double_t zinv = 1./dz;
288 Double_t rin = 0.5*(rmin1+rmin2+(rmin2-rmin1)*point[2]*zinv);
289 // Do Rmin
291 Double_t b,delta,zi;
292 if (rin>0) {
293 // Protection in case point is actually outside the cone
294 if (rsq < rin*(rin+TGeoShape::Tolerance())) {
295 Double_t ddotn = point[0]*dir[0]+point[1]*dir[1]+0.5*(rmin1-rmin2)*dir[2]*zinv*TMath::Sqrt(rsq);
296 if (ddotn<=0) return 0.0;
297 } else {
298 TGeoCone::DistToCone(point, dir, dz, rmin1, rmin2, b, delta);
299 if (delta>0) {
300 sr = -b-delta;
301 if (sr>0) {
302 zi = point[2]+sr*dir[2];
303 if (TMath::Abs(zi)<=dz) return TMath::Min(sz,sr);
304 }
305 sr = -b+delta;
306 if (sr>0) {
307 zi = point[2]+sr*dir[2];
308 if (TMath::Abs(zi)<=dz) return TMath::Min(sz,sr);
309 }
310 }
311 }
312 }
313 // Do Rmax
314 Double_t rout = 0.5*(rmax1+rmax2+(rmax2-rmax1)*point[2]*zinv);
315 if (rsq > rout*(rout-TGeoShape::Tolerance())) {
316 Double_t ddotn = point[0]*dir[0]+point[1]*dir[1]+0.5*(rmax1-rmax2)*dir[2]*zinv*TMath::Sqrt(rsq);
317 if (ddotn>=0) return 0.0;
318 TGeoCone::DistToCone(point, dir, dz, rmax1, rmax2, b, delta);
319 if (delta<0) return 0.0;
320 sr = -b+delta;
321 if (sr<0) return sz;
322 if (TMath::Abs(-b-delta)>sr) return sz;
323 zi = point[2]+sr*dir[2];
324 if (TMath::Abs(zi)<=dz) return TMath::Min(sz,sr);
325 return sz;
326 }
327 TGeoCone::DistToCone(point, dir, dz, rmax1, rmax2, b, delta);
328 if (delta>0) {
329 sr = -b-delta;
330 if (sr>0) {
331 zi = point[2]+sr*dir[2];
332 if (TMath::Abs(zi)<=dz) return TMath::Min(sz,sr);
333 }
334 sr = -b+delta;
335 if (sr>TGeoShape::Tolerance()) {
336 zi = point[2]+sr*dir[2];
337 if (TMath::Abs(zi)<=dz) return TMath::Min(sz,sr);
338 }
339 }
340 return sz;
341}
342
343////////////////////////////////////////////////////////////////////////////////
344/// Compute distance from inside point to surface of the cone
345/// Boundary safe algorithm.
346
347Double_t TGeoCone::DistFromInside(const Double_t *point, const Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
348{
349 if (iact<3 && safe) {
350 *safe = Safety(point, kTRUE);
351 if (iact==0) return TGeoShape::Big();
352 if ((iact==1) && (*safe>step)) return TGeoShape::Big();
353 }
354 // compute distance to surface
355 return TGeoCone::DistFromInsideS(point, dir, fDz, fRmin1, fRmax1, fRmin2, fRmax2);
356}
357
358////////////////////////////////////////////////////////////////////////////////
359/// Compute distance from outside point to surface of the tube
360/// Boundary safe algorithm.
361
363 Double_t rmin1, Double_t rmax1, Double_t rmin2, Double_t rmax2)
364{
365 // compute distance to Z planes
366 if (dz<=0) return TGeoShape::Big();
367 Double_t snxt;
368 Double_t xp, yp, zp;
369 Bool_t inz = kTRUE;
370
371 if (point[2]<=-dz) {
372 if (dir[2]<=0) return TGeoShape::Big();
373 snxt = (-dz-point[2])/dir[2];
374 xp = point[0]+snxt*dir[0];
375 yp = point[1]+snxt*dir[1];
376 Double_t r2 = xp*xp+yp*yp;
377 if ((r2>=rmin1*rmin1) && (r2<=rmax1*rmax1)) return snxt;
378 inz = kFALSE;
379 } else {
380 if (point[2]>=dz) {
381 if (dir[2]>=0) return TGeoShape::Big();
382 snxt = (dz-point[2])/dir[2];
383 xp = point[0]+snxt*dir[0];
384 yp = point[1]+snxt*dir[1];
385 Double_t r2 = xp*xp+yp*yp;
386 if ((r2>=rmin2*rmin2) && (r2<=rmax2*rmax2)) return snxt;
387 inz = kFALSE;
388 }
389 }
390
391 Double_t rsq = point[0]*point[0]+point[1]*point[1];
392 Double_t dzinv = 1./dz;
393 Double_t ro1=0.5*(rmin1+rmin2);
394 Bool_t hasrmin = (ro1>0)?kTRUE:kFALSE;
395 Double_t tg1 = 0.;
396 Double_t rin = 0.;
397 Bool_t inrmin = kTRUE; // r>=rmin
398 if (hasrmin) {
399 tg1=0.5*(rmin2-rmin1)*dzinv;
400 rin=ro1+tg1*point[2];
401 if (rin>0 && rsq<rin*(rin-TGeoShape::Tolerance())) inrmin=kFALSE;
402 }
403 Double_t ro2=0.5*(rmax1+rmax2);
404 Double_t tg2=0.5*(rmax2-rmax1)*dzinv;
405 Double_t rout=tg2*point[2]+ro2;
406 Bool_t inrmax = kFALSE;
407 if (rout>0 && rsq<rout*(rout+TGeoShape::Tolerance())) inrmax=kTRUE;
408 Bool_t in = inz & inrmin & inrmax;
409 Double_t b,delta;
410 // If inside cone, we are most likely on a boundary within machine precision.
411 if (in) {
413 Double_t safz = dz-TMath::Abs(point[2]); // positive
414 Double_t safrmin = (hasrmin)?(r-rin):TGeoShape::Big();
415 Double_t safrmax = rout - r;
416 if (safz<=safrmin && safz<=safrmax) {
417 // on Z boundary
418 if (point[2]*dir[2]<0) return 0.0;
419 return TGeoShape::Big();
420 }
421 if (safrmax<safrmin) {
422 // on rmax boundary
423 Double_t ddotn = point[0]*dir[0]+point[1]*dir[1]-tg2*dir[2]*r;
424 if (ddotn<=0) return 0.0;
425 return TGeoShape::Big();
426 }
427 // on rmin boundary
428 Double_t ddotn = point[0]*dir[0]+point[1]*dir[1]-tg1*dir[2]*r;
429 if (ddotn>=0) return 0.0;
430 // we can cross (+) solution of rmin
431 TGeoCone::DistToCone(point, dir, dz, rmin1, rmin2, b, delta);
432
433 if (delta<0) return 0.0;
434 snxt = -b+delta;
435 if (snxt<0) return TGeoShape::Big();
436 if (TMath::Abs(-b-delta)>snxt) return TGeoShape::Big();
437 zp = point[2]+snxt*dir[2];
438 if (TMath::Abs(zp)<=dz) return snxt;
439 return TGeoShape::Big();
440 }
441
442 // compute distance to inner cone
443 snxt = TGeoShape::Big();
444 if (!inrmin) {
445 // ray can cross inner cone (but not only!)
446 TGeoCone::DistToCone(point, dir, dz, rmin1, rmin2, b, delta);
447 if (delta<0) return TGeoShape::Big();
448 snxt = -b+delta;
449 if (snxt>0) {
450 zp = point[2]+snxt*dir[2];
451 if (TMath::Abs(zp)<=dz) return snxt;
452 }
453 snxt = -b-delta;
454 if (snxt>0) {
455 zp = point[2]+snxt*dir[2];
456 if (TMath::Abs(zp)<=dz) return snxt;
457 }
458 snxt = TGeoShape::Big();
459 } else {
460 if (hasrmin) {
461 TGeoCone::DistToCone(point, dir, dz, rmin1, rmin2, b, delta);
462 if (delta>0) {
463 Double_t din = -b+delta;
464 if (din>0) {
465 zp = point[2]+din*dir[2];
466 if (TMath::Abs(zp)<=dz) snxt = din;
467 }
468 }
469 }
470 }
471
472 if (inrmax) return snxt;
473 // We can cross outer cone, both solutions possible
474 // compute distance to outer cone
475 TGeoCone::DistToCone(point, dir, dz, rmax1, rmax2, b, delta);
476 if (delta<0) return snxt;
477 Double_t dout = -b-delta;
478 if (dout>0 && dout<snxt) {
479 zp = point[2]+dout*dir[2];
480 if (TMath::Abs(zp)<=dz) return dout;
481 }
482 dout = -b+delta;
483 if (dout<=0 || dout>snxt) return snxt;
484 zp = point[2]+dout*dir[2];
485 if (TMath::Abs(zp)<=dz) return dout;
486 return snxt;
487}
488
489////////////////////////////////////////////////////////////////////////////////
490/// compute distance from outside point to surface of the tube
491
492Double_t TGeoCone::DistFromOutside(const Double_t *point, const Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
493{
494 // compute safe radius
495 if (iact<3 && safe) {
496 *safe = Safety(point, kFALSE);
497 if (iact==0) return TGeoShape::Big();
498 if ((iact==1) && (*safe>step)) return TGeoShape::Big();
499 }
500 // Check if the bounding box is crossed within the requested distance
501 Double_t sdist = TGeoBBox::DistFromOutside(point,dir, fDX, fDY, fDZ, fOrigin, step);
502 if (sdist>=step) return TGeoShape::Big();
503 // compute distance to Z planes
505}
506
507////////////////////////////////////////////////////////////////////////////////
508/// Static method to compute distance to a conical surface with :
509/// - r1, z1 - radius and Z position of lower base
510/// - r2, z2 - radius and Z position of upper base
511
512void TGeoCone::DistToCone(const Double_t *point, const Double_t *dir, Double_t dz, Double_t r1, Double_t r2,
513 Double_t &b, Double_t &delta)
514{
515 delta = -1.;
516 if (dz<0) return;
517 Double_t ro0 = 0.5*(r1+r2);
518 Double_t tz = 0.5*(r2-r1)/dz;
519 Double_t rsq = point[0]*point[0] + point[1]*point[1];
520 Double_t rc = ro0 + point[2]*tz;
521
522 Double_t a = dir[0]*dir[0] + dir[1]*dir[1] - tz*tz*dir[2]*dir[2];
523 b = point[0]*dir[0] + point[1]*dir[1] - tz*rc*dir[2];
524 Double_t c = rsq - rc*rc;
525
527 if (TMath::Abs(b)<TGeoShape::Tolerance()) return;
528 b = 0.5*c/b;
529 delta = 0.;
530 return;
531 }
532 a = 1./a;
533 b *= a;
534 c *= a;
535 delta = b*b - c;
536 if (delta>0) {
537 delta = TMath::Sqrt(delta);
538 } else {
539 delta = -1.;
540 }
541}
542
543////////////////////////////////////////////////////////////////////////////////
544/// compute closest distance from point px,py to each corner
545
547{
549 const Int_t numPoints = 4*n;
550 return ShapeDistancetoPrimitive(numPoints, px, py);
551}
552
553////////////////////////////////////////////////////////////////////////////////
554/// Divide this cone shape belonging to volume "voldiv" into ndiv volumes
555/// called divname, from start position with the given step. Returns pointer
556/// to created division cell volume in case of Z divisions. For Z division
557/// creates all volumes with different shapes and returns pointer to volume that
558/// was divided. In case a wrong division axis is supplied, returns pointer to
559/// volume that was divided.
560
561TGeoVolume *TGeoCone::Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv,
562 Double_t start, Double_t step)
563{
564 TGeoShape *shape; //--- shape to be created
565 TGeoVolume *vol; //--- division volume to be created
566 TGeoVolumeMulti *vmulti; //--- generic divided volume
567 TGeoPatternFinder *finder; //--- finder to be attached
568 TString opt = ""; //--- option to be attached
569 Int_t id;
570 Double_t end = start+ndiv*step;
571 switch (iaxis) {
572 case 1: //--- R division
573 Error("Divide","division of a cone on R not implemented");
574 return 0;
575 case 2: // --- Phi division
576 finder = new TGeoPatternCylPhi(voldiv, ndiv, start, end);
577 voldiv->SetFinder(finder);
578 finder->SetDivIndex(voldiv->GetNdaughters());
579 shape = new TGeoConeSeg(fDz, fRmin1, fRmax1, fRmin2, fRmax2, -step/2, step/2);
580 vol = new TGeoVolume(divname, shape, voldiv->GetMedium());
581 vmulti = gGeoManager->MakeVolumeMulti(divname, voldiv->GetMedium());
582 vmulti->AddVolume(vol);
583 opt = "Phi";
584 for (id=0; id<ndiv; id++) {
585 voldiv->AddNodeOffset(vol, id, start+id*step+step/2, opt.Data());
586 ((TGeoNodeOffset*)voldiv->GetNodes()->At(voldiv->GetNdaughters()-1))->SetFinder(finder);
587 }
588 return vmulti;
589 case 3: //--- Z division
590 vmulti = gGeoManager->MakeVolumeMulti(divname, voldiv->GetMedium());
591 finder = new TGeoPatternZ(voldiv, ndiv, start, end);
592 voldiv->SetFinder(finder);
593 finder->SetDivIndex(voldiv->GetNdaughters());
594 for (id=0; id<ndiv; id++) {
595 Double_t z1 = start+id*step;
596 Double_t z2 = start+(id+1)*step;
597 Double_t rmin1n = 0.5*(fRmin1*(fDz-z1)+fRmin2*(fDz+z1))/fDz;
598 Double_t rmax1n = 0.5*(fRmax1*(fDz-z1)+fRmax2*(fDz+z1))/fDz;
599 Double_t rmin2n = 0.5*(fRmin1*(fDz-z2)+fRmin2*(fDz+z2))/fDz;
600 Double_t rmax2n = 0.5*(fRmax1*(fDz-z2)+fRmax2*(fDz+z2))/fDz;
601 shape = new TGeoCone(0.5*step,rmin1n, rmax1n, rmin2n, rmax2n);
602 vol = new TGeoVolume(divname, shape, voldiv->GetMedium());
603 vmulti->AddVolume(vol);
604 opt = "Z";
605 voldiv->AddNodeOffset(vol, id, start+id*step+step/2, opt.Data());
606 ((TGeoNodeOffset*)voldiv->GetNodes()->At(voldiv->GetNdaughters()-1))->SetFinder(finder);
607 }
608 return vmulti;
609 default:
610 Error("Divide", "Wrong axis type for division");
611 return 0;
612 }
613}
614
615////////////////////////////////////////////////////////////////////////////////
616/// Returns name of axis IAXIS.
617
618const char *TGeoCone::GetAxisName(Int_t iaxis) const
619{
620 switch (iaxis) {
621 case 1:
622 return "R";
623 case 2:
624 return "PHI";
625 case 3:
626 return "Z";
627 default:
628 return "undefined";
629 }
630}
631
632////////////////////////////////////////////////////////////////////////////////
633/// Get range of shape for a given axis.
634
636{
637 xlo = 0;
638 xhi = 0;
639 Double_t dx = 0;
640 switch (iaxis) {
641 case 2:
642 xlo = 0.;
643 xhi = 360.;
644 return 360.;
645 case 3:
646 xlo = -fDz;
647 xhi = fDz;
648 dx = xhi-xlo;
649 return dx;
650 }
651 return dx;
652}
653
654////////////////////////////////////////////////////////////////////////////////
655/// Fill vector param[4] with the bounding cylinder parameters. The order
656/// is the following : Rmin, Rmax, Phi1, Phi2, dZ
657
659{
660 param[0] = TMath::Min(fRmin1, fRmin2); // Rmin
661 param[0] *= param[0];
662 param[1] = TMath::Max(fRmax1, fRmax2); // Rmax
663 param[1] *= param[1];
664 param[2] = 0.; // Phi1
665 param[3] = 360.; // Phi2
666}
667
668////////////////////////////////////////////////////////////////////////////////
669/// in case shape has some negative parameters, these has to be computed
670/// in order to fit the mother
671
673{
674 if (!TestShapeBit(kGeoRunTimeShape)) return 0;
675 if (!mother->TestShapeBit(kGeoCone)) {
676 Error("GetMakeRuntimeShape", "invalid mother");
677 return 0;
678 }
679 Double_t rmin1, rmax1, rmin2, rmax2, dz;
680 rmin1 = fRmin1;
681 rmax1 = fRmax1;
682 rmin2 = fRmin2;
683 rmax2 = fRmax2;
684 dz = fDz;
685 if (fDz<0) dz=((TGeoCone*)mother)->GetDz();
686 if (fRmin1<0)
687 rmin1 = ((TGeoCone*)mother)->GetRmin1();
688 if (fRmax1<0)
689 rmax1 = ((TGeoCone*)mother)->GetRmax1();
690 if (fRmin2<0)
691 rmin2 = ((TGeoCone*)mother)->GetRmin2();
692 if (fRmax2<0)
693 rmax2 = ((TGeoCone*)mother)->GetRmax2();
694
695 return (new TGeoCone(GetName(), dz, rmin1, rmax1, rmin2, rmax2));
696}
697
698////////////////////////////////////////////////////////////////////////////////
699/// Fills array with n random points located on the line segments of the shape mesh.
700/// The output array must be provided with a length of minimum 3*npoints. Returns
701/// true if operation is implemented.
702
704{
705 if (npoints > (npoints/2)*2) {
706 Error("GetPointsOnSegments","Npoints must be even number");
707 return kFALSE;
708 }
709 Bool_t hasrmin = (fRmin1>0 || fRmin2>0)?kTRUE:kFALSE;
710 Int_t nc = 0;
711 if (hasrmin) nc = (Int_t)TMath::Sqrt(0.5*npoints);
712 else nc = (Int_t)TMath::Sqrt(1.*npoints);
713 Double_t dphi = TMath::TwoPi()/nc;
714 Double_t phi = 0;
715 Int_t ntop = 0;
716 if (hasrmin) ntop = npoints/2 - nc*(nc-1);
717 else ntop = npoints - nc*(nc-1);
718 Double_t dz = 2*fDz/(nc-1);
719 Double_t z = 0;
720 Int_t icrt = 0;
721 Int_t nphi = nc;
722 Double_t rmin = 0.;
723 Double_t rmax = 0.;
724 // loop z sections
725 for (Int_t i=0; i<nc; i++) {
726 if (i == (nc-1)) nphi = ntop;
727 z = -fDz + i*dz;
728 if (hasrmin) rmin = 0.5*(fRmin1+fRmin2) + 0.5*(fRmin2-fRmin1)*z/fDz;
729 rmax = 0.5*(fRmax1+fRmax2) + 0.5*(fRmax2-fRmax1)*z/fDz;
730 // loop points on circle sections
731 for (Int_t j=0; j<nphi; j++) {
732 phi = j*dphi;
733 if (hasrmin) {
734 array[icrt++] = rmin * TMath::Cos(phi);
735 array[icrt++] = rmin * TMath::Sin(phi);
736 array[icrt++] = z;
737 }
738 array[icrt++] = rmax * TMath::Cos(phi);
739 array[icrt++] = rmax * TMath::Sin(phi);
740 array[icrt++] = z;
741 }
742 }
743 return kTRUE;
744}
745
746
747////////////////////////////////////////////////////////////////////////////////
748/// print shape parameters
749
751{
752 printf("*** Shape %s TGeoCone ***\n", GetName());
753 printf(" dz =: %11.5f\n", fDz);
754 printf(" Rmin1 = %11.5f\n", fRmin1);
755 printf(" Rmax1 = %11.5f\n", fRmax1);
756 printf(" Rmin2 = %11.5f\n", fRmin2);
757 printf(" Rmax2 = %11.5f\n", fRmax2);
758 printf(" Bounding box:\n");
760}
761
762////////////////////////////////////////////////////////////////////////////////
763/// Creates a TBuffer3D describing *this* shape.
764/// Coordinates are in local reference frame.
765
767{
769 Int_t nbPnts = 4*n;
770 Int_t nbSegs = 8*n;
771 Int_t nbPols = 4*n;
773 nbPnts, 3*nbPnts,
774 nbSegs, 3*nbSegs,
775 nbPols, 6*nbPols);
776
777 if (buff)
778 {
779 SetPoints(buff->fPnts);
780 SetSegsAndPols(*buff);
781 }
782 return buff;
783}
784
785////////////////////////////////////////////////////////////////////////////////
786/// Fill TBuffer3D structure for segments and polygons.
787
789{
790 Int_t i,j;
793
794 for (i = 0; i < 4; i++) {
795 for (j = 0; j < n; j++) {
796 buffer.fSegs[(i*n+j)*3 ] = c;
797 buffer.fSegs[(i*n+j)*3+1] = i*n+j;
798 buffer.fSegs[(i*n+j)*3+2] = i*n+j+1;
799 }
800 buffer.fSegs[(i*n+j-1)*3+2] = i*n;
801 }
802 for (i = 4; i < 6; i++) {
803 for (j = 0; j < n; j++) {
804 buffer.fSegs[(i*n+j)*3 ] = c+1;
805 buffer.fSegs[(i*n+j)*3+1] = (i-4)*n+j;
806 buffer.fSegs[(i*n+j)*3+2] = (i-2)*n+j;
807 }
808 }
809 for (i = 6; i < 8; i++) {
810 for (j = 0; j < n; j++) {
811 buffer.fSegs[(i*n+j)*3 ] = c;
812 buffer.fSegs[(i*n+j)*3+1] = 2*(i-6)*n+j;
813 buffer.fSegs[(i*n+j)*3+2] = (2*(i-6)+1)*n+j;
814 }
815 }
816
817 Int_t indx = 0;
818 i=0;
819 for (j = 0; j < n; j++) {
820 indx = 6*(i*n+j);
821 buffer.fPols[indx ] = c;
822 buffer.fPols[indx+1] = 4;
823 buffer.fPols[indx+5] = i*n+j;
824 buffer.fPols[indx+4] = (4+i)*n+j;
825 buffer.fPols[indx+3] = (2+i)*n+j;
826 buffer.fPols[indx+2] = (4+i)*n+j+1;
827 }
828 buffer.fPols[indx+2] = (4+i)*n;
829 i=1;
830 for (j = 0; j < n; j++) {
831 indx = 6*(i*n+j);
832 buffer.fPols[indx ] = c;
833 buffer.fPols[indx+1] = 4;
834 buffer.fPols[indx+2] = i*n+j;
835 buffer.fPols[indx+3] = (4+i)*n+j;
836 buffer.fPols[indx+4] = (2+i)*n+j;
837 buffer.fPols[indx+5] = (4+i)*n+j+1;
838 }
839 buffer.fPols[indx+5] = (4+i)*n;
840 i=2;
841 for (j = 0; j < n; j++) {
842 indx = 6*(i*n+j);
843 buffer.fPols[indx ] = c+i;
844 buffer.fPols[indx+1] = 4;
845 buffer.fPols[indx+2] = (i-2)*2*n+j;
846 buffer.fPols[indx+3] = (4+i)*n+j;
847 buffer.fPols[indx+4] = ((i-2)*2+1)*n+j;
848 buffer.fPols[indx+5] = (4+i)*n+j+1;
849 }
850 buffer.fPols[indx+5] = (4+i)*n;
851 i=3;
852 for (j = 0; j < n; j++) {
853 indx = 6*(i*n+j);
854 buffer.fPols[indx ] = c+i;
855 buffer.fPols[indx+1] = 4;
856 buffer.fPols[indx+5] = (i-2)*2*n+j;
857 buffer.fPols[indx+4] = (4+i)*n+j;
858 buffer.fPols[indx+3] = ((i-2)*2+1)*n+j;
859 buffer.fPols[indx+2] = (4+i)*n+j+1;
860 }
861 buffer.fPols[indx+2] = (4+i)*n;
862}
863
864////////////////////////////////////////////////////////////////////////////////
865/// computes the closest distance from given point to this shape, according
866/// to option. The matching point on the shape is stored in spoint.
867
869{
870 Double_t saf[4];
871 Double_t r=TMath::Sqrt(point[0]*point[0]+point[1]*point[1]);
872 saf[0] = TGeoShape::SafetySeg(r,point[2], fRmin1, -fDz, fRmax1, -fDz, !in);
873 saf[1] = TGeoShape::SafetySeg(r,point[2], fRmax2, fDz, fRmin2, fDz, !in);
874 saf[2] = TGeoShape::SafetySeg(r,point[2], fRmin2, fDz, fRmin1, -fDz, !in);
875 saf[3] = TGeoShape::SafetySeg(r,point[2], fRmax1, -fDz, fRmax2, fDz, !in);
876 Double_t safety = saf[TMath::LocMin(4,saf)];
877 if (safety>1.E20) safety = 0.;
878 return safety;
879}
880
881////////////////////////////////////////////////////////////////////////////////
882/// computes the closest distance from given point to this shape, according
883/// to option. The matching point on the shape is stored in spoint.
884
886 Double_t rmin2, Double_t rmax2, Int_t skipz)
887{
888 Double_t saf[4];
889 Double_t r=TMath::Sqrt(point[0]*point[0]+point[1]*point[1]);
890// Double_t rin = tg1*point[2]+ro1;
891// Double_t rout = tg2*point[2]+ro2;
892 switch (skipz) {
893 case 1: // skip lower Z plane
894 saf[0] = TGeoShape::Big();
895 saf[1] = TGeoShape::SafetySeg(r,point[2], rmax2, dz, rmin2, dz, !in);
896 break;
897 case 2: // skip upper Z plane
898 saf[0] = TGeoShape::SafetySeg(r,point[2], rmin1, -dz, rmax1, -dz, !in);
899 saf[1] = TGeoShape::Big();
900 break;
901 case 3: // skip both
902 saf[0] = saf[1] = TGeoShape::Big();
903 break;
904 default:
905 saf[0] = TGeoShape::SafetySeg(r,point[2], rmin1, -dz, rmax1, -dz, !in);
906 saf[1] = TGeoShape::SafetySeg(r,point[2], rmax2, dz, rmin2, dz, !in);
907 }
908 // Safety to inner part
909 if (rmin1>0 || rmin2>0)
910 saf[2] = TGeoShape::SafetySeg(r,point[2], rmin2, dz, rmin1, -dz, !in);
911 else
912 saf[2] = TGeoShape::Big();
913 saf[3] = TGeoShape::SafetySeg(r,point[2], rmax1, -dz, rmax2, dz, !in);
914 return saf[TMath::LocMin(4,saf)];
915}
916
917////////////////////////////////////////////////////////////////////////////////
918/// Save a primitive as a C++ statement(s) on output stream "out".
919
920void TGeoCone::SavePrimitive(std::ostream &out, Option_t * /*option*/ /*= ""*/)
921{
923 out << " // Shape: " << GetName() << " type: " << ClassName() << std::endl;
924 out << " dz = " << fDz << ";" << std::endl;
925 out << " rmin1 = " << fRmin1 << ";" << std::endl;
926 out << " rmax1 = " << fRmax1 << ";" << std::endl;
927 out << " rmin2 = " << fRmin2 << ";" << std::endl;
928 out << " rmax2 = " << fRmax2 << ";" << std::endl;
929 out << " TGeoShape *" << GetPointerName() << " = new TGeoCone(\"" << GetName() << "\", dz,rmin1,rmax1,rmin2,rmax2);" << std::endl;
931}
932
933////////////////////////////////////////////////////////////////////////////////
934/// Set cone dimensions.
935
937 Double_t rmin2, Double_t rmax2)
938{
939 if (rmin1>=0) {
940 if (rmax1>0) {
941 if (rmin1<=rmax1) {
942 // normal rmin/rmax
943 fRmin1 = rmin1;
944 fRmax1 = rmax1;
945 } else {
946 fRmin1 = rmax1;
947 fRmax1 = rmin1;
948 Warning("SetConeDimensions", "rmin1>rmax1 Switch rmin1<->rmax1");
950 }
951 } else {
952 // run-time
953 fRmin1 = rmin1;
954 fRmax1 = rmax1;
955 }
956 } else {
957 // run-time
958 fRmin1 = rmin1;
959 fRmax1 = rmax1;
960 }
961 if (rmin2>=0) {
962 if (rmax2>0) {
963 if (rmin2<=rmax2) {
964 // normal rmin/rmax
965 fRmin2 = rmin2;
966 fRmax2 = rmax2;
967 } else {
968 fRmin2 = rmax2;
969 fRmax2 = rmin2;
970 Warning("SetConeDimensions", "rmin2>rmax2 Switch rmin2<->rmax2");
972 }
973 } else {
974 // run-time
975 fRmin2 = rmin2;
976 fRmax2 = rmax2;
977 }
978 } else {
979 // run-time
980 fRmin2 = rmin2;
981 fRmax2 = rmax2;
982 }
983
984 fDz = dz;
985}
986
987////////////////////////////////////////////////////////////////////////////////
988/// Set cone dimensions from an array.
989
991{
992 Double_t dz = param[0];
993 Double_t rmin1 = param[1];
994 Double_t rmax1 = param[2];
995 Double_t rmin2 = param[3];
996 Double_t rmax2 = param[4];
997 SetConeDimensions(dz, rmin1, rmax1, rmin2, rmax2);
998}
999
1000////////////////////////////////////////////////////////////////////////////////
1001/// Create cone mesh points.
1002
1004{
1005 Double_t dz, phi, dphi;
1006 Int_t j, n;
1007
1009 dphi = 360./n;
1010 dz = fDz;
1011 Int_t indx = 0;
1012
1013 if (points) {
1014 for (j = 0; j < n; j++) {
1015 phi = j*dphi*TMath::DegToRad();
1016 points[indx++] = fRmin1 * TMath::Cos(phi);
1017 points[indx++] = fRmin1 * TMath::Sin(phi);
1018 points[indx++] = -dz;
1019 }
1020
1021 for (j = 0; j < n; j++) {
1022 phi = j*dphi*TMath::DegToRad();
1023 points[indx++] = fRmax1 * TMath::Cos(phi);
1024 points[indx++] = fRmax1 * TMath::Sin(phi);
1025 points[indx++] = -dz;
1026 }
1027
1028 for (j = 0; j < n; j++) {
1029 phi = j*dphi*TMath::DegToRad();
1030 points[indx++] = fRmin2 * TMath::Cos(phi);
1031 points[indx++] = fRmin2 * TMath::Sin(phi);
1032 points[indx++] = dz;
1033 }
1034
1035 for (j = 0; j < n; j++) {
1036 phi = j*dphi*TMath::DegToRad();
1037 points[indx++] = fRmax2 * TMath::Cos(phi);
1038 points[indx++] = fRmax2 * TMath::Sin(phi);
1039 points[indx++] = dz;
1040 }
1041 }
1042}
1043
1044////////////////////////////////////////////////////////////////////////////////
1045/// Create cone mesh points.
1046
1048{
1049 Double_t dz, phi, dphi;
1050 Int_t j, n;
1051
1053 dphi = 360./n;
1054 dz = fDz;
1055 Int_t indx = 0;
1056
1057 if (points) {
1058 for (j = 0; j < n; j++) {
1059 phi = j*dphi*TMath::DegToRad();
1060 points[indx++] = fRmin1 * TMath::Cos(phi);
1061 points[indx++] = fRmin1 * TMath::Sin(phi);
1062 points[indx++] = -dz;
1063 }
1064
1065 for (j = 0; j < n; j++) {
1066 phi = j*dphi*TMath::DegToRad();
1067 points[indx++] = fRmax1 * TMath::Cos(phi);
1068 points[indx++] = fRmax1 * TMath::Sin(phi);
1069 points[indx++] = -dz;
1070 }
1071
1072 for (j = 0; j < n; j++) {
1073 phi = j*dphi*TMath::DegToRad();
1074 points[indx++] = fRmin2 * TMath::Cos(phi);
1075 points[indx++] = fRmin2 * TMath::Sin(phi);
1076 points[indx++] = dz;
1077 }
1078
1079 for (j = 0; j < n; j++) {
1080 phi = j*dphi*TMath::DegToRad();
1081 points[indx++] = fRmax2 * TMath::Cos(phi);
1082 points[indx++] = fRmax2 * TMath::Sin(phi);
1083 points[indx++] = dz;
1084 }
1085 }
1086}
1087
1088////////////////////////////////////////////////////////////////////////////////
1089/// Returns numbers of vertices, segments and polygons composing the shape mesh.
1090
1091void TGeoCone::GetMeshNumbers(Int_t &nvert, Int_t &nsegs, Int_t &npols) const
1092{
1094 nvert = n*4;
1095 nsegs = n*8;
1096 npols = n*4;
1097}
1098
1099////////////////////////////////////////////////////////////////////////////////
1100/// Return number of vertices of the mesh representation
1101
1103{
1105 Int_t numPoints = n*4;
1106 return numPoints;
1107}
1108
1109////////////////////////////////////////////////////////////////////////////////
1110/// Fill size of this 3-D object
1111
1113{
1114}
1115
1116////////////////////////////////////////////////////////////////////////////////
1117/// Fills a static 3D buffer and returns a reference.
1118
1119const TBuffer3D & TGeoCone::GetBuffer3D(Int_t reqSections, Bool_t localFrame) const
1120{
1121 static TBuffer3D buffer(TBuffer3DTypes::kGeneric);
1122
1123 TGeoBBox::FillBuffer3D(buffer, reqSections, localFrame);
1124
1125 if (reqSections & TBuffer3D::kRawSizes) {
1127 Int_t nbPnts = 4*n;
1128 Int_t nbSegs = 8*n;
1129 Int_t nbPols = 4*n;
1130 if (buffer.SetRawSizes(nbPnts, 3*nbPnts, nbSegs, 3*nbSegs, nbPols, 6*nbPols)) {
1132 }
1133 }
1134
1135 // TODO: Can we push this as common down to TGeoShape?
1136 if ((reqSections & TBuffer3D::kRaw) && buffer.SectionsValid(TBuffer3D::kRawSizes)) {
1137 SetPoints(buffer.fPnts);
1138 if (!buffer.fLocalFrame) {
1139 TransformPoints(buffer.fPnts, buffer.NbPnts());
1140 }
1141
1142 SetSegsAndPols(buffer);
1144 }
1145
1146 return buffer;
1147}
1148
1149////////////////////////////////////////////////////////////////////////////////
1150/// Check the inside status for each of the points in the array.
1151/// Input: Array of point coordinates + vector size
1152/// Output: Array of Booleans for the inside of each point
1153
1154void TGeoCone::Contains_v(const Double_t *points, Bool_t *inside, Int_t vecsize) const
1155{
1156 for (Int_t i=0; i<vecsize; i++) inside[i] = Contains(&points[3*i]);
1157}
1158
1159////////////////////////////////////////////////////////////////////////////////
1160/// Compute the normal for an array o points so that norm.dot.dir is positive
1161/// Input: Arrays of point coordinates and directions + vector size
1162/// Output: Array of normal directions
1163
1164void TGeoCone::ComputeNormal_v(const Double_t *points, const Double_t *dirs, Double_t *norms, Int_t vecsize)
1165{
1166 for (Int_t i=0; i<vecsize; i++) ComputeNormal(&points[3*i], &dirs[3*i], &norms[3*i]);
1167}
1168
1169////////////////////////////////////////////////////////////////////////////////
1170/// Compute distance from array of input points having directions specified by dirs. Store output in dists
1171
1172void TGeoCone::DistFromInside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t* step) const
1173{
1174 for (Int_t i=0; i<vecsize; i++) dists[i] = DistFromInside(&points[3*i], &dirs[3*i], 3, step[i]);
1175}
1176
1177////////////////////////////////////////////////////////////////////////////////
1178/// Compute distance from array of input points having directions specified by dirs. Store output in dists
1179
1180void TGeoCone::DistFromOutside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t* step) const
1181{
1182 for (Int_t i=0; i<vecsize; i++) dists[i] = DistFromOutside(&points[3*i], &dirs[3*i], 3, step[i]);
1183}
1184
1185////////////////////////////////////////////////////////////////////////////////
1186/// Compute safe distance from each of the points in the input array.
1187/// Input: Array of point coordinates, array of statuses for these points, size of the arrays
1188/// Output: Safety values
1189
1190void TGeoCone::Safety_v(const Double_t *points, const Bool_t *inside, Double_t *safe, Int_t vecsize) const
1191{
1192 for (Int_t i=0; i<vecsize; i++) safe[i] = Safety(&points[3*i], inside[i]);
1193}
1194
1196
1197////////////////////////////////////////////////////////////////////////////////
1198/// Default constructor
1199
1201 :TGeoCone(),
1202 fPhi1(0.), fPhi2(0.), fS1(0.), fC1(0.), fS2(0.), fC2(0.), fSm(0.), fCm(0.), fCdfi(0.)
1203{
1205 fPhi1 = fPhi2 = 0.0;
1206}
1207
1208////////////////////////////////////////////////////////////////////////////////
1209/// Default constructor specifying minimum and maximum radius
1210
1212 Double_t rmin2, Double_t rmax2, Double_t phi1, Double_t phi2)
1213 :TGeoCone(dz, rmin1, rmax1, rmin2, rmax2),
1214 fPhi1(0.), fPhi2(0.), fS1(0.), fC1(0.), fS2(0.), fC2(0.), fSm(0.), fCm(0.), fCdfi(0.)
1215
1216{
1218 SetConsDimensions(dz, rmin1, rmax1, rmin2, rmax2, phi1, phi2);
1219 ComputeBBox();
1220}
1221
1222////////////////////////////////////////////////////////////////////////////////
1223/// Default constructor specifying minimum and maximum radius
1224
1226 Double_t rmin2, Double_t rmax2, Double_t phi1, Double_t phi2)
1227 :TGeoCone(name, dz, rmin1, rmax1, rmin2, rmax2),
1228 fPhi1(0.), fPhi2(0.), fS1(0.), fC1(0.), fS2(0.), fC2(0.), fSm(0.), fCm(0.), fCdfi(0.)
1229{
1231 SetConsDimensions(dz, rmin1, rmax1, rmin2, rmax2, phi1, phi2);
1232 ComputeBBox();
1233}
1234
1235////////////////////////////////////////////////////////////////////////////////
1236/// Default constructor specifying minimum and maximum radius
1237/// - param[0] = dz
1238/// - param[1] = Rmin1
1239/// - param[2] = Rmax1
1240/// - param[3] = Rmin2
1241/// - param[4] = Rmax2
1242/// - param[5] = phi1
1243/// - param[6] = phi2
1244
1246 :TGeoCone(0,0,0,0,0),
1247 fPhi1(0.), fPhi2(0.), fS1(0.), fC1(0.), fS2(0.), fC2(0.), fSm(0.), fCm(0.), fCdfi(0.)
1248{
1250 SetDimensions(param);
1251 ComputeBBox();
1252}
1253
1254////////////////////////////////////////////////////////////////////////////////
1255/// destructor
1256
1258{
1259}
1260
1261////////////////////////////////////////////////////////////////////////////////
1262/// Function called after streaming an object of this class.
1263
1265{
1267}
1268
1269////////////////////////////////////////////////////////////////////////////////
1270/// Init frequently used trigonometric values
1271
1273{
1276 fC1 = TMath::Cos(phi1);
1277 fS1 = TMath::Sin(phi1);
1278 fC2 = TMath::Cos(phi2);
1279 fS2 = TMath::Sin(phi2);
1280 Double_t fio = 0.5*(phi1+phi2);
1281 fCm = TMath::Cos(fio);
1282 fSm = TMath::Sin(fio);
1283 Double_t dfi = 0.5*(phi2-phi1);
1284 fCdfi = TMath::Cos(dfi);
1285}
1286
1287////////////////////////////////////////////////////////////////////////////////
1288/// Computes capacity of the shape in [length^3]
1289
1291{
1293}
1294
1295////////////////////////////////////////////////////////////////////////////////
1296/// Computes capacity of the shape in [length^3]
1297
1299{
1300 Double_t capacity = (TMath::Abs(phi2-phi1)*TMath::DegToRad()*dz/3.)*
1301 (rmax1*rmax1+rmax2*rmax2+rmax1*rmax2-
1302 rmin1*rmin1-rmin2*rmin2-rmin1*rmin2);
1303 return capacity;
1304}
1305
1306////////////////////////////////////////////////////////////////////////////////
1307/// compute bounding box of the tube segment
1308
1310{
1311 Double_t rmin, rmax;
1312 rmin = TMath::Min(fRmin1, fRmin2);
1313 rmax = TMath::Max(fRmax1, fRmax2);
1314
1315 Double_t xc[4];
1316 Double_t yc[4];
1317 xc[0] = rmax*fC1;
1318 yc[0] = rmax*fS1;
1319 xc[1] = rmax*fC2;
1320 yc[1] = rmax*fS2;
1321 xc[2] = rmin*fC1;
1322 yc[2] = rmin*fS1;
1323 xc[3] = rmin*fC2;
1324 yc[3] = rmin*fS2;
1325
1326 Double_t xmin = xc[TMath::LocMin(4, &xc[0])];
1327 Double_t xmax = xc[TMath::LocMax(4, &xc[0])];
1328 Double_t ymin = yc[TMath::LocMin(4, &yc[0])];
1329 Double_t ymax = yc[TMath::LocMax(4, &yc[0])];
1330
1331 Double_t dp = fPhi2-fPhi1;
1332 Double_t ddp = -fPhi1;
1333 if (ddp<0) ddp+= 360;
1334 if (ddp<=dp) xmax = rmax;
1335 ddp = 90-fPhi1;
1336 if (ddp<0) ddp+= 360;
1337 if (ddp<=dp) ymax = rmax;
1338 ddp = 180-fPhi1;
1339 if (ddp<0) ddp+= 360;
1340 if (ddp<=dp) xmin = -rmax;
1341 ddp = 270-fPhi1;
1342 if (ddp<0) ddp+= 360;
1343 if (ddp<=dp) ymin = -rmax;
1344 fOrigin[0] = (xmax+xmin)/2;
1345 fOrigin[1] = (ymax+ymin)/2;
1346 fOrigin[2] = 0;
1347 fDX = (xmax-xmin)/2;
1348 fDY = (ymax-ymin)/2;
1349 fDZ = fDz;
1350}
1351
1352////////////////////////////////////////////////////////////////////////////////
1353/// Compute normal to closest surface from POINT.
1354
1355void TGeoConeSeg::ComputeNormal(const Double_t *point, const Double_t *dir, Double_t *norm)
1356{
1357 Double_t saf[3];
1358 Double_t ro1 = 0.5*(fRmin1+fRmin2);
1359 Double_t tg1 = 0.5*(fRmin2-fRmin1)/fDz;
1360 Double_t cr1 = 1./TMath::Sqrt(1.+tg1*tg1);
1361 Double_t ro2 = 0.5*(fRmax1+fRmax2);
1362 Double_t tg2 = 0.5*(fRmax2-fRmax1)/fDz;
1363 Double_t cr2 = 1./TMath::Sqrt(1.+tg2*tg2);
1364
1365 Double_t r=TMath::Sqrt(point[0]*point[0]+point[1]*point[1]);
1366 Double_t rin = tg1*point[2]+ro1;
1367 Double_t rout = tg2*point[2]+ro2;
1368 saf[0] = TMath::Abs(fDz-TMath::Abs(point[2]));
1369 saf[1] = (ro1>0)?(TMath::Abs((r-rin)*cr1)):TGeoShape::Big();
1370 saf[2] = TMath::Abs((rout-r)*cr2);
1371 Int_t i = TMath::LocMin(3,saf);
1372 if (((fPhi2-fPhi1)<360.) && TGeoShape::IsCloseToPhi(saf[i], point,fC1,fS1,fC2,fS2)) {
1373 TGeoShape::NormalPhi(point,dir,norm,fC1,fS1,fC2,fS2);
1374 return;
1375 }
1376 if (i==0) {
1377 norm[0] = norm[1] = 0.;
1378 norm[2] = TMath::Sign(1.,dir[2]);
1379 return;
1380 }
1381
1382 Double_t phi = TMath::ATan2(point[1],point[0]);
1383 Double_t cphi = TMath::Cos(phi);
1384 Double_t sphi = TMath::Sin(phi);
1385
1386 if (i==1) {
1387 norm[0] = cr1*cphi;
1388 norm[1] = cr1*sphi;
1389 norm[2] = -tg1*cr1;
1390 } else {
1391 norm[0] = cr2*cphi;
1392 norm[1] = cr2*sphi;
1393 norm[2] = -tg2*cr2;
1394 }
1395
1396 if (norm[0]*dir[0]+norm[1]*dir[1]+norm[2]*dir[2]<0) {
1397 norm[0] = -norm[0];
1398 norm[1] = -norm[1];
1399 norm[2] = -norm[2];
1400 }
1401}
1402
1403////////////////////////////////////////////////////////////////////////////////
1404/// Compute normal to closest surface from POINT.
1405
1406void TGeoConeSeg::ComputeNormalS(const Double_t *point, const Double_t *dir, Double_t *norm,
1407 Double_t dz, Double_t rmin1, Double_t rmax1, Double_t rmin2, Double_t rmax2,
1409{
1410 Double_t saf[2];
1411 Double_t ro1 = 0.5*(rmin1+rmin2);
1412 Double_t tg1 = 0.5*(rmin2-rmin1)/dz;
1413 Double_t cr1 = 1./TMath::Sqrt(1.+tg1*tg1);
1414 Double_t ro2 = 0.5*(rmax1+rmax2);
1415 Double_t tg2 = 0.5*(rmax2-rmax1)/dz;
1416 Double_t cr2 = 1./TMath::Sqrt(1.+tg2*tg2);
1417
1418 Double_t r=TMath::Sqrt(point[0]*point[0]+point[1]*point[1]);
1419 Double_t rin = tg1*point[2]+ro1;
1420 Double_t rout = tg2*point[2]+ro2;
1421 saf[0] = (ro1>0)?(TMath::Abs((r-rin)*cr1)):TGeoShape::Big();
1422 saf[1] = TMath::Abs((rout-r)*cr2);
1423 Int_t i = TMath::LocMin(2,saf);
1424 if (TGeoShape::IsCloseToPhi(saf[i], point,c1,s1,c2,s2)) {
1425 TGeoShape::NormalPhi(point,dir,norm,c1,s1,c2,s2);
1426 return;
1427 }
1428
1429 Double_t phi = TMath::ATan2(point[1],point[0]);
1430 Double_t cphi = TMath::Cos(phi);
1431 Double_t sphi = TMath::Sin(phi);
1432
1433 if (i==0) {
1434 norm[0] = cr1*cphi;
1435 norm[1] = cr1*sphi;
1436 norm[2] = -tg1*cr1;
1437 } else {
1438 norm[0] = cr2*cphi;
1439 norm[1] = cr2*sphi;
1440 norm[2] = -tg2*cr2;
1441 }
1442
1443 if (norm[0]*dir[0]+norm[1]*dir[1]+norm[2]*dir[2]<0) {
1444 norm[0] = -norm[0];
1445 norm[1] = -norm[1];
1446 norm[2] = -norm[2];
1447 }
1448}
1449
1450////////////////////////////////////////////////////////////////////////////////
1451/// test if point is inside this sphere
1452
1454{
1455 if (!TGeoCone::Contains(point)) return kFALSE;
1456 Double_t dphi = fPhi2 - fPhi1;
1457 if (dphi >= 360.) return kTRUE;
1458 Double_t phi = TMath::ATan2(point[1], point[0]) * TMath::RadToDeg();
1459 if (phi < 0 ) phi+=360.;
1460 Double_t ddp = phi-fPhi1;
1461 if (ddp < 0) ddp+=360.;
1462// if (ddp > 360) ddp-=360;
1463 if (ddp > dphi) return kFALSE;
1464 return kTRUE;
1465}
1466
1467////////////////////////////////////////////////////////////////////////////////
1468/// Static method to compute distance to a conical surface with :
1469/// - r1, z1 - radius and Z position of lower base
1470/// - r2, z2 - radius and Z position of upper base
1471/// - phi1, phi2 - phi limits
1472
1474{
1475 Double_t dz = z2-z1;
1476 if (dz<=0) {
1477 return TGeoShape::Big();
1478 }
1479
1480 Double_t dphi = phi2 - phi1;
1481 Bool_t hasphi = kTRUE;
1482 if (dphi >= 360.) hasphi=kFALSE;
1483 if (dphi < 0) dphi+=360.;
1484// printf("phi1=%f phi2=%f dphi=%f\n", phi1, phi2, dphi);
1485
1486 Double_t ro0 = 0.5*(r1+r2);
1487 Double_t fz = (r2-r1)/dz;
1488 Double_t r0sq = point[0]*point[0] + point[1]*point[1];
1489 Double_t rc = ro0 + fz*(point[2]-0.5*(z1+z2));
1490
1491 Double_t a = dir[0]*dir[0] + dir[1]*dir[1] - fz*fz*dir[2]*dir[2];
1492 Double_t b = point[0]*dir[0] + point[1]*dir[1] - fz*rc*dir[2];
1493 Double_t c = r0sq - rc*rc;
1494
1495 if (a==0) return TGeoShape::Big();
1496 a = 1./a;
1497 b *= a;
1498 c *= a;
1499 Double_t delta = b*b - c;
1500 if (delta<0) return TGeoShape::Big();
1501 delta = TMath::Sqrt(delta);
1502
1503 Double_t snxt = -b-delta;
1504 Double_t ptnew[3];
1505 Double_t ddp, phi;
1506 if (snxt>0) {
1507 // check Z range
1508 ptnew[2] = point[2] + snxt*dir[2];
1509 if (((ptnew[2]-z1)*(ptnew[2]-z2)) < 0) {
1510 // check phi range
1511 if (!hasphi) return snxt;
1512 ptnew[0] = point[0] + snxt*dir[0];
1513 ptnew[1] = point[1] + snxt*dir[1];
1514 phi = TMath::ATan2(ptnew[1], ptnew[0]) * TMath::RadToDeg();
1515 if (phi < 0 ) phi+=360.;
1516 ddp = phi-phi1;
1517 if (ddp < 0) ddp+=360.;
1518 // printf("snxt1=%f phi=%f ddp=%f\n", snxt, phi, ddp);
1519 if (ddp<=dphi) return snxt;
1520 }
1521 }
1522 snxt = -b+delta;
1523 if (snxt>0) {
1524 // check Z range
1525 ptnew[2] = point[2] + snxt*dir[2];
1526 if (((ptnew[2]-z1)*(ptnew[2]-z2)) < 0) {
1527 // check phi range
1528 if (!hasphi) return snxt;
1529 ptnew[0] = point[0] + snxt*dir[0];
1530 ptnew[1] = point[1] + snxt*dir[1];
1531 phi = TMath::ATan2(ptnew[1], ptnew[0]) * TMath::RadToDeg();
1532 if (phi < 0 ) phi+=360.;
1533 ddp = phi-phi1;
1534 if (ddp < 0) ddp+=360.;
1535 // printf("snxt2=%f phi=%f ddp=%f\n", snxt, phi, ddp);
1536 if (ddp<=dphi) return snxt;
1537 }
1538 }
1539 return TGeoShape::Big();
1540}
1541
1542////////////////////////////////////////////////////////////////////////////////
1543/// compute distance from inside point to surface of the tube segment
1544
1546 Double_t rmin1, Double_t rmax1, Double_t rmin2, Double_t rmax2,
1548{
1549 if (dz<=0) return TGeoShape::Big();
1550 // Do Z
1551 Double_t scone = TGeoCone::DistFromInsideS(point,dir,dz,rmin1,rmax1,rmin2,rmax2);
1552 if (scone<=0) return 0.0;
1553 Double_t sfmin = TGeoShape::Big();
1554 Double_t rsq = point[0]*point[0]+point[1]*point[1];
1555 Double_t r = TMath::Sqrt(rsq);
1556 Double_t cpsi=point[0]*cm+point[1]*sm;
1557 if (cpsi>r*cdfi+TGeoShape::Tolerance()) {
1558 sfmin = TGeoShape::DistToPhiMin(point, dir, s1, c1, s2, c2, sm, cm);
1559 return TMath::Min(scone,sfmin);
1560 }
1561 // Point on the phi boundary or outside
1562 // which one: phi1 or phi2
1563 Double_t ddotn, xi, yi;
1564 if (TMath::Abs(point[1]-s1*r) < TMath::Abs(point[1]-s2*r)) {
1565 ddotn = s1*dir[0]-c1*dir[1];
1566 if (ddotn>=0) return 0.0;
1567 ddotn = -s2*dir[0]+c2*dir[1];
1568 if (ddotn<=0) return scone;
1569 sfmin = s2*point[0]-c2*point[1];
1570 if (sfmin<=0) return scone;
1571 sfmin /= ddotn;
1572 if (sfmin >= scone) return scone;
1573 xi = point[0]+sfmin*dir[0];
1574 yi = point[1]+sfmin*dir[1];
1575 if (yi*cm-xi*sm<0) return scone;
1576 return sfmin;
1577 }
1578 ddotn = -s2*dir[0]+c2*dir[1];
1579 if (ddotn>=0) return 0.0;
1580 ddotn = s1*dir[0]-c1*dir[1];
1581 if (ddotn<=0) return scone;
1582 sfmin = -s1*point[0]+c1*point[1];
1583 if (sfmin<=0) return scone;
1584 sfmin /= ddotn;
1585 if (sfmin >= scone) return scone;
1586 xi = point[0]+sfmin*dir[0];
1587 yi = point[1]+sfmin*dir[1];
1588 if (yi*cm-xi*sm>0) return scone;
1589 return sfmin;
1590}
1591
1592////////////////////////////////////////////////////////////////////////////////
1593/// compute distance from inside point to surface of the tube segment
1594
1595Double_t TGeoConeSeg::DistFromInside(const Double_t *point, const Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
1596{
1597 if (iact<3 && safe) {
1599 if (iact==0) return TGeoShape::Big();
1600 if ((iact==1) && (*safe>step)) return TGeoShape::Big();
1601 }
1602 if ((fPhi2-fPhi1)>=360.) return TGeoCone::DistFromInsideS(point,dir,fDz,fRmin1,fRmax1,fRmin2,fRmax2);
1603
1604 // compute distance to surface
1606}
1607
1608////////////////////////////////////////////////////////////////////////////////
1609/// compute distance from outside point to surface of arbitrary tube
1610
1612 Double_t rmin1, Double_t rmax1, Double_t rmin2, Double_t rmax2,
1614{
1615 if (dz<=0) return TGeoShape::Big();
1616 Double_t r2, cpsi;
1617 // check Z planes
1618 Double_t xi, yi, zi;
1619 Double_t b,delta;
1620 zi = dz - TMath::Abs(point[2]);
1621 Double_t rin,rout;
1623 Double_t snxt=TGeoShape::Big();
1624 Bool_t in = kFALSE;
1625 Bool_t inz = (zi<0)?kFALSE:kTRUE;
1626 if (!inz) {
1627 if (point[2]*dir[2]>=0) return TGeoShape::Big();
1628 s = -zi/TMath::Abs(dir[2]);
1629 xi = point[0]+s*dir[0];
1630 yi = point[1]+s*dir[1];
1631 r2=xi*xi+yi*yi;
1632 if (dir[2]>0) {
1633 rin = rmin1;
1634 rout = rmax1;
1635 } else {
1636 rin = rmin2;
1637 rout = rmax2;
1638 }
1639 if ((rin*rin<=r2) && (r2<=rout*rout)) {
1640 cpsi=xi*cm+yi*sm;
1641 if (cpsi>=(cdfi*TMath::Sqrt(r2))) return s;
1642 }
1643 }
1644 Double_t zinv = 1./dz;
1645 Double_t rsq = point[0]*point[0]+point[1]*point[1];
1646 Double_t r = TMath::Sqrt(rsq);
1647 Double_t ro1=0.5*(rmin1+rmin2);
1648 Bool_t hasrmin = (ro1>0)?kTRUE:kFALSE;
1649 Double_t tg1 = 0.0;
1650 Bool_t inrmin = kFALSE;
1651 rin = 0.0;
1652 if (hasrmin) {
1653 tg1=0.5*(rmin2-rmin1)*zinv;
1654 rin = ro1+tg1*point[2];
1655 if (rsq > rin*(rin-TGeoShape::Tolerance())) inrmin=kTRUE;
1656 } else {
1657 inrmin = kTRUE;
1658 }
1659 Double_t ro2=0.5*(rmax1+rmax2);
1660 Double_t tg2=0.5*(rmax2-rmax1)*zinv;
1661 rout = ro2+tg2*point[2];
1662 Bool_t inrmax = kFALSE;
1663 if (r < rout+TGeoShape::Tolerance()) inrmax = kTRUE;
1664 Bool_t inphi = kFALSE;
1665 cpsi=point[0]*cm+point[1]*sm;
1666 if (cpsi>r*cdfi-TGeoShape::Tolerance()) inphi = kTRUE;
1667 in = inz & inrmin & inrmax & inphi;
1668 // If inside, we are most likely on a boundary within machine precision.
1669 if (in) {
1670 Double_t safphi = (cpsi-r*cdfi)*TMath::Sqrt(1.-cdfi*cdfi);
1671 Double_t safrmin = (hasrmin)?TMath::Abs(r-rin):(TGeoShape::Big());
1672 Double_t safrmax = TMath::Abs(r-rout);
1673 // check if on Z boundaries
1674 if (zi<safrmax && zi<safrmin && zi<safphi) {
1675 if (point[2]*dir[2]<0) return 0.0;
1676 return TGeoShape::Big();
1677 }
1678 // check if on Rmax boundary
1679 if (safrmax<safrmin && safrmax<safphi) {
1680 Double_t ddotn = point[0]*dir[0]+point[1]*dir[1]-tg2*dir[2]*r;
1681 if (ddotn<=0) return 0.0;
1682 return TGeoShape::Big();
1683 }
1684 // check if on phi boundary
1685 if (safphi<safrmin) {
1686 // We may cross again a phi of rmin boundary
1687 // check first if we are on phi1 or phi2
1688 Double_t un;
1689 if (point[0]*c1 + point[1]*s1 > point[0]*c2 + point[1]*s2) {
1690 un = dir[0]*s1-dir[1]*c1;
1691 if (un < 0) return 0.0;
1692 if (cdfi>=0) return TGeoShape::Big();
1693 un = -dir[0]*s2+dir[1]*c2;
1694 if (un<0) {
1695 s = -point[0]*s2+point[1]*c2;
1696 if (s>0) {
1697 s /= (-un);
1698 zi = point[2]+s*dir[2];
1699 if (TMath::Abs(zi)<=dz) {
1700 xi = point[0]+s*dir[0];
1701 yi = point[1]+s*dir[1];
1702 if ((yi*cm-xi*sm)>0) {
1703 r2=xi*xi+yi*yi;
1704 rin = ro1+tg1*zi;
1705 rout = ro2+tg2*zi;
1706 if ((rin*rin<=r2) && (rout*rout>=r2)) return s;
1707 }
1708 }
1709 }
1710 }
1711 } else {
1712 un = -dir[0]*s2+dir[1]*c2;
1713 if (un < 0) return 0.0;
1714 if (cdfi>=0) return TGeoShape::Big();
1715 un = dir[0]*s1-dir[1]*c1;
1716 if (un<0) {
1717 s = point[0]*s1-point[1]*c1;
1718 if (s>0) {
1719 s /= (-un);
1720 zi = point[2]+s*dir[2];
1721 if (TMath::Abs(zi)<=dz) {
1722 xi = point[0]+s*dir[0];
1723 yi = point[1]+s*dir[1];
1724 if ((yi*cm-xi*sm)<0) {
1725 r2=xi*xi+yi*yi;
1726 rin = ro1+tg1*zi;
1727 rout = ro2+tg2*zi;
1728 if ((rin*rin<=r2) && (rout*rout>=r2)) return s;
1729 }
1730 }
1731 }
1732 }
1733 }
1734 // We may also cross rmin, second solution coming from outside
1735 Double_t ddotn = point[0]*dir[0]+point[1]*dir[1]-tg1*dir[2]*r;
1736 if (ddotn>=0) return TGeoShape::Big();
1737 if (cdfi>=0) return TGeoShape::Big();
1738 TGeoCone::DistToCone(point, dir, dz, rmin1, rmin2, b, delta);
1739 if (delta<0) return TGeoShape::Big();
1740 snxt = -b-delta;
1741 if (snxt<0) return TGeoShape::Big();
1742 snxt = -b+delta;
1743 zi = point[2]+snxt*dir[2];
1744 if (TMath::Abs(zi)>dz) return TGeoShape::Big();
1745 xi = point[0]+snxt*dir[0];
1746 yi = point[1]+snxt*dir[1];
1747 r2=xi*xi+yi*yi;
1748 cpsi=xi*cm+yi*sm;
1749 if (cpsi>=(cdfi*TMath::Sqrt(r2))) return snxt;
1750 return TGeoShape::Big();
1751 }
1752 // We are on rmin boundary: we may cross again rmin or a phi facette
1753 Double_t ddotn = point[0]*dir[0]+point[1]*dir[1]-tg1*dir[2]*r;
1754 if (ddotn>=0) return 0.0;
1755 TGeoCone::DistToCone(point, dir, dz, rmin1, rmin2, b, delta);
1756 if (delta<0) return 0.0;
1757 snxt = -b+delta;
1758 if (snxt<0) return TGeoShape::Big();
1759 if (TMath::Abs(-b-delta)>snxt) return TGeoShape::Big();
1760 zi = point[2]+snxt*dir[2];
1761 if (TMath::Abs(zi)>dz) return TGeoShape::Big();
1762 // OK, we cross rmin at snxt - check if within phi range
1763 xi = point[0]+snxt*dir[0];
1764 yi = point[1]+snxt*dir[1];
1765 r2=xi*xi+yi*yi;
1766 cpsi=xi*cm+yi*sm;
1767 if (cpsi>=(cdfi*TMath::Sqrt(r2))) return snxt;
1768 // we cross rmin in the phi gap - we may cross a phi facette
1769 if (cdfi>=0) return TGeoShape::Big();
1770 Double_t un=-dir[0]*s1+dir[1]*c1;
1771 if (un > 0) {
1772 s=point[0]*s1-point[1]*c1;
1773 if (s>=0) {
1774 s /= un;
1775 zi=point[2]+s*dir[2];
1776 if (TMath::Abs(zi)<=dz) {
1777 xi=point[0]+s*dir[0];
1778 yi=point[1]+s*dir[1];
1779 if ((yi*cm-xi*sm)<=0) {
1780 r2=xi*xi+yi*yi;
1781 rin = ro1+tg1*zi;
1782 rout = ro2+tg2*zi;
1783 if ((rin*rin<=r2) && (rout*rout>=r2)) return s;
1784 }
1785 }
1786 }
1787 }
1788 un=dir[0]*s2-dir[1]*c2;
1789 if (un > 0) {
1790 s=(point[1]*c2-point[0]*s2)/un;
1791 if (s>=0) {
1792 zi=point[2]+s*dir[2];
1793 if (TMath::Abs(zi)<=dz) {
1794 xi=point[0]+s*dir[0];
1795 yi=point[1]+s*dir[1];
1796 if ((yi*cm-xi*sm)>=0) {
1797 r2=xi*xi+yi*yi;
1798 rin = ro1+tg1*zi;
1799 rout = ro2+tg2*zi;
1800 if ((rin*rin<=r2) && (rout*rout>=r2)) return s;
1801 }
1802 }
1803 }
1804 }
1805 return TGeoShape::Big();
1806 }
1807
1808 // The point is really outside
1809 Double_t sr1 = TGeoShape::Big();
1810 if (!inrmax) {
1811 // check crossing with outer cone
1812 TGeoCone::DistToCone(point, dir, dz, rmax1, rmax2, b, delta);
1813 if (delta>=0) {
1814 s = -b-delta;
1815 if (s>0) {
1816 zi=point[2]+s*dir[2];
1817 if (TMath::Abs(zi)<=dz) {
1818 xi=point[0]+s*dir[0];
1819 yi=point[1]+s*dir[1];
1820 r2=xi*xi+yi*yi;
1821 cpsi=xi*cm+yi*sm;
1822 if (cpsi>=(cdfi*TMath::Sqrt(r2))) return s; // rmax crossing
1823 }
1824 }
1825 s = -b+delta;
1826 if (s>0) {
1827 zi=point[2]+s*dir[2];
1828 if (TMath::Abs(zi)<=dz) {
1829 xi=point[0]+s*dir[0];
1830 yi=point[1]+s*dir[1];
1831 r2=xi*xi+yi*yi;
1832 cpsi=xi*cm+yi*sm;
1833 if (cpsi>=(cdfi*TMath::Sqrt(r2))) sr1=s;
1834 }
1835 }
1836 }
1837 }
1838 // check crossing with inner cone
1839 Double_t sr2 = TGeoShape::Big();
1840 TGeoCone::DistToCone(point, dir, dz, rmin1, rmin2, b, delta);
1841 if (delta>=0) {
1842 s = -b-delta;
1843 if (s>0) {
1844 zi=point[2]+s*dir[2];
1845 if (TMath::Abs(zi)<=dz) {
1846 xi=point[0]+s*dir[0];
1847 yi=point[1]+s*dir[1];
1848 r2=xi*xi+yi*yi;
1849 cpsi=xi*cm+yi*sm;
1850 if (cpsi>=(cdfi*TMath::Sqrt(r2))) sr2=s;
1851 }
1852 }
1853 if (sr2>1E10) {
1854 s = -b+delta;
1855 if (s>0) {
1856 zi=point[2]+s*dir[2];
1857 if (TMath::Abs(zi)<=dz) {
1858 xi=point[0]+s*dir[0];
1859 yi=point[1]+s*dir[1];
1860 r2=xi*xi+yi*yi;
1861 cpsi=xi*cm+yi*sm;
1862 if (cpsi>=(cdfi*TMath::Sqrt(r2))) sr2=s;
1863 }
1864 }
1865 }
1866 }
1867 snxt = TMath::Min(sr1,sr2);
1868 // Check phi crossing
1869 s = TGeoShape::DistToPhiMin(point,dir,s1,c1,s2,c2,sm,cm,kFALSE);
1870 if (s>snxt) return snxt;
1871 zi=point[2]+s*dir[2];
1872 if (TMath::Abs(zi)>dz) return snxt;
1873 xi=point[0]+s*dir[0];
1874 yi=point[1]+s*dir[1];
1875 r2=xi*xi+yi*yi;
1876 rout = ro2+tg2*zi;
1877 if (r2>rout*rout) return snxt;
1878 rin = ro1+tg1*zi;
1879 if (r2>=rin*rin) return s; // phi crossing
1880 return snxt;
1881}
1882
1883////////////////////////////////////////////////////////////////////////////////
1884/// compute distance from outside point to surface of the tube
1885
1886Double_t TGeoConeSeg::DistFromOutside(const Double_t *point, const Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
1887{
1888 // compute safe radius
1889 if (iact<3 && safe) {
1890 *safe = Safety(point, kFALSE);
1891 if (iact==0) return TGeoShape::Big();
1892 if ((iact==1) && (*safe>step)) return TGeoShape::Big();
1893 }
1894 // Check if the bounding box is crossed within the requested distance
1895 Double_t sdist = TGeoBBox::DistFromOutside(point,dir, fDX, fDY, fDZ, fOrigin, step);
1896 if (sdist>=step) return TGeoShape::Big();
1897 if ((fPhi2-fPhi1)>=360.) return TGeoCone::DistFromOutsideS(point,dir,fDz,fRmin1,fRmax1,fRmin2,fRmax2);
1899}
1900
1901////////////////////////////////////////////////////////////////////////////////
1902/// compute closest distance from point px,py to each corner
1903
1905{
1907 const Int_t numPoints = 4*n;
1908 return ShapeDistancetoPrimitive(numPoints, px, py);
1909}
1910
1911////////////////////////////////////////////////////////////////////////////////
1912/// Divide this cone segment shape belonging to volume "voldiv" into ndiv volumes
1913/// called divname, from start position with the given step. Returns pointer
1914/// to created division cell volume in case of Z divisions. For Z division
1915/// creates all volumes with different shapes and returns pointer to volume that
1916/// was divided. In case a wrong division axis is supplied, returns pointer to
1917/// volume that was divided.
1918
1919TGeoVolume *TGeoConeSeg::Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv,
1920 Double_t start, Double_t step)
1921{
1922 TGeoShape *shape; //--- shape to be created
1923 TGeoVolume *vol; //--- division volume to be created
1924 TGeoVolumeMulti *vmulti; //--- generic divided volume
1925 TGeoPatternFinder *finder; //--- finder to be attached
1926 TString opt = ""; //--- option to be attached
1927 Double_t dphi;
1928 Int_t id;
1929 Double_t end = start+ndiv*step;
1930 switch (iaxis) {
1931 case 1: //--- R division
1932 Error("Divide","division of a cone segment on R not implemented");
1933 return 0;
1934 case 2: //--- Phi division
1935 dphi = fPhi2-fPhi1;
1936 if (dphi<0) dphi+=360.;
1937 finder = new TGeoPatternCylPhi(voldiv, ndiv, start, end);
1938 voldiv->SetFinder(finder);
1939 finder->SetDivIndex(voldiv->GetNdaughters());
1940 shape = new TGeoConeSeg(fDz, fRmin1, fRmax1, fRmin2, fRmax2, -step/2, step/2);
1941 vol = new TGeoVolume(divname, shape, voldiv->GetMedium());
1942 vmulti = gGeoManager->MakeVolumeMulti(divname, voldiv->GetMedium());
1943 vmulti->AddVolume(vol);
1944 opt = "Phi";
1945 for (id=0; id<ndiv; id++) {
1946 voldiv->AddNodeOffset(vol, id, start+id*step+step/2, opt.Data());
1947 ((TGeoNodeOffset*)voldiv->GetNodes()->At(voldiv->GetNdaughters()-1))->SetFinder(finder);
1948 }
1949 return vmulti;
1950 case 3: //--- Z division
1951 finder = new TGeoPatternZ(voldiv, ndiv, start, end);
1952 vmulti = gGeoManager->MakeVolumeMulti(divname, voldiv->GetMedium());
1953 voldiv->SetFinder(finder);
1954 finder->SetDivIndex(voldiv->GetNdaughters());
1955 for (id=0; id<ndiv; id++) {
1956 Double_t z1 = start+id*step;
1957 Double_t z2 = start+(id+1)*step;
1958 Double_t rmin1n = 0.5*(fRmin1*(fDz-z1)+fRmin2*(fDz+z1))/fDz;
1959 Double_t rmax1n = 0.5*(fRmax1*(fDz-z1)+fRmax2*(fDz+z1))/fDz;
1960 Double_t rmin2n = 0.5*(fRmin1*(fDz-z2)+fRmin2*(fDz+z2))/fDz;
1961 Double_t rmax2n = 0.5*(fRmax1*(fDz-z2)+fRmax2*(fDz+z2))/fDz;
1962 shape = new TGeoConeSeg(step/2, rmin1n, rmax1n, rmin2n, rmax2n, fPhi1, fPhi2);
1963 vol = new TGeoVolume(divname, shape, voldiv->GetMedium());
1964 vmulti->AddVolume(vol);
1965 opt = "Z";
1966 voldiv->AddNodeOffset(vol, id, start+id*step+step/2, opt.Data());
1967 ((TGeoNodeOffset*)voldiv->GetNodes()->At(voldiv->GetNdaughters()-1))->SetFinder(finder);
1968 }
1969 return vmulti;
1970 default:
1971 Error("Divide", "Wrong axis type for division");
1972 return 0;
1973 }
1974}
1975
1976////////////////////////////////////////////////////////////////////////////////
1977/// Get range of shape for a given axis.
1978
1980{
1981 xlo = 0;
1982 xhi = 0;
1983 Double_t dx = 0;
1984 switch (iaxis) {
1985 case 2:
1986 xlo = fPhi1;
1987 xhi = fPhi2;
1988 dx = xhi-xlo;
1989 return dx;
1990 case 3:
1991 xlo = -fDz;
1992 xhi = fDz;
1993 dx = xhi-xlo;
1994 return dx;
1995 }
1996 return dx;
1997}
1998
1999////////////////////////////////////////////////////////////////////////////////
2000/// Fill vector param[4] with the bounding cylinder parameters. The order
2001/// is the following : Rmin, Rmax, Phi1, Phi2
2002
2004{
2005 param[0] = TMath::Min(fRmin1, fRmin2); // Rmin
2006 param[0] *= param[0];
2007 param[1] = TMath::Max(fRmax1, fRmax2); // Rmax
2008 param[1] *= param[1];
2009 param[2] = (fPhi1<0)?(fPhi1+360.):fPhi1; // Phi1
2010 param[3] = fPhi2; // Phi2
2011 while (param[3]<param[2]) param[3]+=360.;
2012}
2013
2014////////////////////////////////////////////////////////////////////////////////
2015/// in case shape has some negative parameters, these has to be computed
2016/// in order to fit the mother
2017
2019{
2020 if (!TestShapeBit(kGeoRunTimeShape)) return 0;
2021 if (!mother->TestShapeBit(kGeoConeSeg)) {
2022 Error("GetMakeRuntimeShape", "invalid mother");
2023 return 0;
2024 }
2025 Double_t rmin1, rmax1, rmin2, rmax2, dz;
2026 rmin1 = fRmin1;
2027 rmax1 = fRmax1;
2028 rmin2 = fRmin2;
2029 rmax2 = fRmax2;
2030 dz = fDz;
2031 if (fDz<0) dz=((TGeoCone*)mother)->GetDz();
2032 if (fRmin1<0)
2033 rmin1 = ((TGeoCone*)mother)->GetRmin1();
2034 if ((fRmax1<0) || (fRmax1<fRmin1))
2035 rmax1 = ((TGeoCone*)mother)->GetRmax1();
2036 if (fRmin2<0)
2037 rmin2 = ((TGeoCone*)mother)->GetRmin2();
2038 if ((fRmax2<0) || (fRmax2<fRmin2))
2039 rmax2 = ((TGeoCone*)mother)->GetRmax2();
2040
2041 return (new TGeoConeSeg(GetName(), dz, rmin1, rmax1, rmin2, rmax2, fPhi1, fPhi2));
2042}
2043
2044////////////////////////////////////////////////////////////////////////////////
2045/// print shape parameters
2046
2048{
2049 printf("*** Shape %s: TGeoConeSeg ***\n", GetName());
2050 printf(" dz = %11.5f\n", fDz);
2051 printf(" Rmin1 = %11.5f\n", fRmin1);
2052 printf(" Rmax1 = %11.5f\n", fRmax1);
2053 printf(" Rmin2 = %11.5f\n", fRmin2);
2054 printf(" Rmax2 = %11.5f\n", fRmax2);
2055 printf(" phi1 = %11.5f\n", fPhi1);
2056 printf(" phi2 = %11.5f\n", fPhi2);
2057 printf(" Bounding box:\n");
2059}
2060
2061 ///////////////////////////////////////////////////////////////////////////////
2062 /// Creates a TBuffer3D describing *this* shape.
2063 /// Coordinates are in local reference frame.
2064
2066{
2068 Int_t nbPnts = 4*n;
2069 Int_t nbSegs = 2*nbPnts;
2070 Int_t nbPols = nbPnts-2;
2072 nbPnts, 3*nbPnts,
2073 nbSegs, 3*nbSegs,
2074 nbPols, 6*nbPols);
2075
2076 if (buff)
2077 {
2078 SetPoints(buff->fPnts);
2079 SetSegsAndPols(*buff);
2080 }
2081
2082 return buff;
2083}
2084
2085////////////////////////////////////////////////////////////////////////////////
2086/// Fill TBuffer3D structure for segments and polygons.
2087
2089{
2090 Int_t i, j;
2092 Int_t c = GetBasicColor();
2093
2094 memset(buffer.fSegs, 0, buffer.NbSegs()*3*sizeof(Int_t));
2095 for (i = 0; i < 4; i++) {
2096 for (j = 1; j < n; j++) {
2097 buffer.fSegs[(i*n+j-1)*3 ] = c;
2098 buffer.fSegs[(i*n+j-1)*3+1] = i*n+j-1;
2099 buffer.fSegs[(i*n+j-1)*3+2] = i*n+j;
2100 }
2101 }
2102 for (i = 4; i < 6; i++) {
2103 for (j = 0; j < n; j++) {
2104 buffer.fSegs[(i*n+j)*3 ] = c+1;
2105 buffer.fSegs[(i*n+j)*3+1] = (i-4)*n+j;
2106 buffer.fSegs[(i*n+j)*3+2] = (i-2)*n+j;
2107 }
2108 }
2109 for (i = 6; i < 8; i++) {
2110 for (j = 0; j < n; j++) {
2111 buffer.fSegs[(i*n+j)*3 ] = c;
2112 buffer.fSegs[(i*n+j)*3+1] = 2*(i-6)*n+j;
2113 buffer.fSegs[(i*n+j)*3+2] = (2*(i-6)+1)*n+j;
2114 }
2115 }
2116
2117 Int_t indx = 0;
2118 memset(buffer.fPols, 0, buffer.NbPols()*6*sizeof(Int_t));
2119 i = 0;
2120 for (j = 0; j < n-1; j++) {
2121 buffer.fPols[indx++] = c;
2122 buffer.fPols[indx++] = 4;
2123 buffer.fPols[indx++] = (4+i)*n+j+1;
2124 buffer.fPols[indx++] = (2+i)*n+j;
2125 buffer.fPols[indx++] = (4+i)*n+j;
2126 buffer.fPols[indx++] = i*n+j;
2127 }
2128 i = 1;
2129 for (j = 0; j < n-1; j++) {
2130 buffer.fPols[indx++] = c;
2131 buffer.fPols[indx++] = 4;
2132 buffer.fPols[indx++] = i*n+j;
2133 buffer.fPols[indx++] = (4+i)*n+j;
2134 buffer.fPols[indx++] = (2+i)*n+j;
2135 buffer.fPols[indx++] = (4+i)*n+j+1;
2136 }
2137 i = 2;
2138 for (j = 0; j < n-1; j++) {
2139 buffer.fPols[indx++] = c+i;
2140 buffer.fPols[indx++] = 4;
2141 buffer.fPols[indx++] = (i-2)*2*n+j;
2142 buffer.fPols[indx++] = (4+i)*n+j;
2143 buffer.fPols[indx++] = ((i-2)*2+1)*n+j;
2144 buffer.fPols[indx++] = (4+i)*n+j+1;
2145 }
2146 i = 3;
2147 for (j = 0; j < n-1; j++) {
2148 buffer.fPols[indx++] = c+i;
2149 buffer.fPols[indx++] = 4;
2150 buffer.fPols[indx++] = (4+i)*n+j+1;
2151 buffer.fPols[indx++] = ((i-2)*2+1)*n+j;
2152 buffer.fPols[indx++] = (4+i)*n+j;
2153 buffer.fPols[indx++] = (i-2)*2*n+j;
2154 }
2155 buffer.fPols[indx++] = c+2;
2156 buffer.fPols[indx++] = 4;
2157 buffer.fPols[indx++] = 6*n;
2158 buffer.fPols[indx++] = 4*n;
2159 buffer.fPols[indx++] = 7*n;
2160 buffer.fPols[indx++] = 5*n;
2161 buffer.fPols[indx++] = c+2;
2162 buffer.fPols[indx++] = 4;
2163 buffer.fPols[indx++] = 6*n-1;
2164 buffer.fPols[indx++] = 8*n-1;
2165 buffer.fPols[indx++] = 5*n-1;
2166 buffer.fPols[indx++] = 7*n-1;
2167}
2168
2169////////////////////////////////////////////////////////////////////////////////
2170/// computes the closest distance from given point to this shape, according
2171/// to option. The matching point on the shape is stored in spoint.
2172
2174{
2175 Double_t safe = TGeoCone::Safety(point,in);
2176 if ((fPhi2-fPhi1)>=360.) return safe;
2177 Double_t safphi = TGeoShape::SafetyPhi(point, in, fPhi1, fPhi2);
2178 if (in) return TMath::Min(safe, safphi);
2179 if (safe>1.E10) return safphi;
2180 return TMath::Max(safe, safphi);
2181}
2182
2183////////////////////////////////////////////////////////////////////////////////
2184/// Static method to compute the closest distance from given point to this shape.
2185
2187 Double_t rmin2, Double_t rmax2, Double_t phi1, Double_t phi2, Int_t skipz)
2188{
2189 Double_t safe = TGeoCone::SafetyS(point,in,dz,rmin1,rmax1,rmin2,rmax2,skipz);
2190 if ((phi2-phi1)>=360.) return safe;
2191 Double_t safphi = TGeoShape::SafetyPhi(point,in,phi1,phi2);
2192 if (in) return TMath::Min(safe, safphi);
2193 if (safe>1.E10) return safphi;
2194 return TMath::Max(safe, safphi);
2195}
2196
2197////////////////////////////////////////////////////////////////////////////////
2198/// Save a primitive as a C++ statement(s) on output stream "out".
2199
2200void TGeoConeSeg::SavePrimitive(std::ostream &out, Option_t * /*option*/ /*= ""*/)
2201{
2203 out << " // Shape: " << GetName() << " type: " << ClassName() << std::endl;
2204 out << " dz = " << fDz << ";" << std::endl;
2205 out << " rmin1 = " << fRmin1 << ";" << std::endl;
2206 out << " rmax1 = " << fRmax1 << ";" << std::endl;
2207 out << " rmin2 = " << fRmin2 << ";" << std::endl;
2208 out << " rmax2 = " << fRmax2 << ";" << std::endl;
2209 out << " phi1 = " << fPhi1 << ";" << std::endl;
2210 out << " phi2 = " << fPhi2 << ";" << std::endl;
2211 out << " TGeoShape *" << GetPointerName() << " = new TGeoConeSeg(\"" << GetName() << "\", dz,rmin1,rmax1,rmin2,rmax2,phi1,phi2);" << std::endl;
2213}
2214
2215////////////////////////////////////////////////////////////////////////////////
2216/// Set dimensions of the cone segment.
2217
2219 Double_t rmin2, Double_t rmax2, Double_t phi1, Double_t phi2)
2220{
2221 fDz = dz;
2222 fRmin1 = rmin1;
2223 fRmax1 = rmax1;
2224 fRmin2 = rmin2;
2225 fRmax2 = rmax2;
2226 fPhi1 = phi1;
2227 while (fPhi1<0) fPhi1+=360.;
2228 fPhi2 = phi2;
2229 while (fPhi2<=fPhi1) fPhi2+=360.;
2230 if (TGeoShape::IsSameWithinTolerance(fPhi1,fPhi2)) Fatal("SetConsDimensions", "In shape %s invalid phi1=%g, phi2=%g\n", GetName(), fPhi1, fPhi2);
2232}
2233
2234////////////////////////////////////////////////////////////////////////////////
2235/// Set dimensions of the cone segment from an array.
2236
2238{
2239 Double_t dz = param[0];
2240 Double_t rmin1 = param[1];
2241 Double_t rmax1 = param[2];
2242 Double_t rmin2 = param[3];
2243 Double_t rmax2 = param[4];
2244 Double_t phi1 = param[5];
2245 Double_t phi2 = param[6];
2246 SetConsDimensions(dz, rmin1, rmax1,rmin2, rmax2, phi1, phi2);
2247}
2248
2249////////////////////////////////////////////////////////////////////////////////
2250/// Create cone segment mesh points.
2251
2253{
2254 Int_t j, n;
2255 Float_t dphi,phi,phi1, phi2,dz;
2256
2257 n = gGeoManager->GetNsegments()+1;
2258 dz = fDz;
2259 phi1 = fPhi1;
2260 phi2 = fPhi2;
2261
2262 dphi = (phi2-phi1)/(n-1);
2263
2264 Int_t indx = 0;
2265
2266 if (points) {
2267 for (j = 0; j < n; j++) {
2268 phi = (fPhi1+j*dphi)*TMath::DegToRad();
2269 points[indx++] = fRmin1 * TMath::Cos(phi);
2270 points[indx++] = fRmin1 * TMath::Sin(phi);
2271 points[indx++] = -dz;
2272 }
2273 for (j = 0; j < n; j++) {
2274 phi = (fPhi1+j*dphi)*TMath::DegToRad();
2275 points[indx++] = fRmax1 * TMath::Cos(phi);
2276 points[indx++] = fRmax1 * TMath::Sin(phi);
2277 points[indx++] = -dz;
2278 }
2279 for (j = 0; j < n; j++) {
2280 phi = (fPhi1+j*dphi)*TMath::DegToRad();
2281 points[indx++] = fRmin2 * TMath::Cos(phi);
2282 points[indx++] = fRmin2 * TMath::Sin(phi);
2283 points[indx++] = dz;
2284 }
2285 for (j = 0; j < n; j++) {
2286 phi = (fPhi1+j*dphi)*TMath::DegToRad();
2287 points[indx++] = fRmax2 * TMath::Cos(phi);
2288 points[indx++] = fRmax2 * TMath::Sin(phi);
2289 points[indx++] = dz;
2290 }
2291 }
2292}
2293
2294////////////////////////////////////////////////////////////////////////////////
2295/// Create cone segment mesh points.
2296
2298{
2299 Int_t j, n;
2300 Float_t dphi,phi,phi1, phi2,dz;
2301
2302 n = gGeoManager->GetNsegments()+1;
2303 dz = fDz;
2304 phi1 = fPhi1;
2305 phi2 = fPhi2;
2306
2307 dphi = (phi2-phi1)/(n-1);
2308
2309 Int_t indx = 0;
2310
2311 if (points) {
2312 for (j = 0; j < n; j++) {
2313 phi = (fPhi1+j*dphi)*TMath::DegToRad();
2314 points[indx++] = fRmin1 * TMath::Cos(phi);
2315 points[indx++] = fRmin1 * TMath::Sin(phi);
2316 points[indx++] = -dz;
2317 }
2318 for (j = 0; j < n; j++) {
2319 phi = (fPhi1+j*dphi)*TMath::DegToRad();
2320 points[indx++] = fRmax1 * TMath::Cos(phi);
2321 points[indx++] = fRmax1 * TMath::Sin(phi);
2322 points[indx++] = -dz;
2323 }
2324 for (j = 0; j < n; j++) {
2325 phi = (fPhi1+j*dphi)*TMath::DegToRad();
2326 points[indx++] = fRmin2 * TMath::Cos(phi);
2327 points[indx++] = fRmin2 * TMath::Sin(phi);
2328 points[indx++] = dz;
2329 }
2330 for (j = 0; j < n; j++) {
2331 phi = (fPhi1+j*dphi)*TMath::DegToRad();
2332 points[indx++] = fRmax2 * TMath::Cos(phi);
2333 points[indx++] = fRmax2 * TMath::Sin(phi);
2334 points[indx++] = dz;
2335 }
2336 }
2337}
2338
2339////////////////////////////////////////////////////////////////////////////////
2340/// Returns numbers of vertices, segments and polygons composing the shape mesh.
2341
2342void TGeoConeSeg::GetMeshNumbers(Int_t &nvert, Int_t &nsegs, Int_t &npols) const
2343{
2345 nvert = n*4;
2346 nsegs = n*8;
2347 npols = n*4-2;
2348}
2349
2350////////////////////////////////////////////////////////////////////////////////
2351/// Return number of vertices of the mesh representation
2352
2354{
2356 Int_t numPoints = n*4;
2357 return numPoints;
2358}
2359
2360////////////////////////////////////////////////////////////////////////////////
2361/// Fill size of this 3-D object
2362
2364{
2365}
2366
2367////////////////////////////////////////////////////////////////////////////////
2368/// Fills a static 3D buffer and returns a reference.
2369
2370const TBuffer3D & TGeoConeSeg::GetBuffer3D(Int_t reqSections, Bool_t localFrame) const
2371{
2372 static TBuffer3D buffer(TBuffer3DTypes::kGeneric);
2373
2374 TGeoBBox::FillBuffer3D(buffer, reqSections, localFrame);
2375
2376 if (reqSections & TBuffer3D::kRawSizes) {
2378 Int_t nbPnts = 4*n;
2379 Int_t nbSegs = 2*nbPnts;
2380 Int_t nbPols = nbPnts-2;
2381 if (buffer.SetRawSizes(nbPnts, 3*nbPnts, nbSegs, 3*nbSegs, nbPols, 6*nbPols)) {
2383 }
2384 }
2385 if ((reqSections & TBuffer3D::kRaw) && buffer.SectionsValid(TBuffer3D::kRawSizes)) {
2386 SetPoints(buffer.fPnts);
2387 if (!buffer.fLocalFrame) {
2388 TransformPoints(buffer.fPnts, buffer.NbPnts());
2389 }
2390
2391 SetSegsAndPols(buffer);
2393 }
2394
2395 return buffer;
2396}
2397
2398////////////////////////////////////////////////////////////////////////////////
2399/// Fills array with n random points located on the line segments of the shape mesh.
2400/// The output array must be provided with a length of minimum 3*npoints. Returns
2401/// true if operation is implemented.
2402
2404{
2405 if (npoints > (npoints/2)*2) {
2406 Error("GetPointsOnSegments","Npoints must be even number");
2407 return kFALSE;
2408 }
2409 Int_t nc = (Int_t)TMath::Sqrt(0.5*npoints);
2410 Double_t dphi = (fPhi2-fPhi1)*TMath::DegToRad()/(nc-1);
2411 Double_t phi = 0;
2412 Double_t phi1 = fPhi1 * TMath::DegToRad();
2413 Int_t ntop = npoints/2 - nc*(nc-1);
2414 Double_t dz = 2*fDz/(nc-1);
2415 Double_t z = 0;
2416 Double_t rmin = 0.;
2417 Double_t rmax = 0.;
2418 Int_t icrt = 0;
2419 Int_t nphi = nc;
2420 // loop z sections
2421 for (Int_t i=0; i<nc; i++) {
2422 if (i == (nc-1)) {
2423 nphi = ntop;
2424 dphi = (fPhi2-fPhi1)*TMath::DegToRad()/(nphi-1);
2425 }
2426 z = -fDz + i*dz;
2427 rmin = 0.5*(fRmin1+fRmin2) + 0.5*(fRmin2-fRmin1)*z/fDz;
2428 rmax = 0.5*(fRmax1+fRmax2) + 0.5*(fRmax2-fRmax1)*z/fDz;
2429 // loop points on circle sections
2430 for (Int_t j=0; j<nphi; j++) {
2431 phi = phi1 + j*dphi;
2432 array[icrt++] = rmin * TMath::Cos(phi);
2433 array[icrt++] = rmin * TMath::Sin(phi);
2434 array[icrt++] = z;
2435 array[icrt++] = rmax * TMath::Cos(phi);
2436 array[icrt++] = rmax * TMath::Sin(phi);
2437 array[icrt++] = z;
2438 }
2439 }
2440 return kTRUE;
2441}
2442
2443////////////////////////////////////////////////////////////////////////////////
2444/// Check the inside status for each of the points in the array.
2445/// Input: Array of point coordinates + vector size
2446/// Output: Array of Booleans for the inside of each point
2447
2448void TGeoConeSeg::Contains_v(const Double_t *points, Bool_t *inside, Int_t vecsize) const
2449{
2450 for (Int_t i=0; i<vecsize; i++) inside[i] = Contains(&points[3*i]);
2451}
2452
2453////////////////////////////////////////////////////////////////////////////////
2454/// Compute the normal for an array o points so that norm.dot.dir is positive
2455/// Input: Arrays of point coordinates and directions + vector size
2456/// Output: Array of normal directions
2457
2458void TGeoConeSeg::ComputeNormal_v(const Double_t *points, const Double_t *dirs, Double_t *norms, Int_t vecsize)
2459{
2460 for (Int_t i=0; i<vecsize; i++) ComputeNormal(&points[3*i], &dirs[3*i], &norms[3*i]);
2461}
2462
2463////////////////////////////////////////////////////////////////////////////////
2464/// Compute distance from array of input points having directions specified by dirs. Store output in dists
2465
2466void TGeoConeSeg::DistFromInside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t* step) const
2467{
2468 for (Int_t i=0; i<vecsize; i++) dists[i] = DistFromInside(&points[3*i], &dirs[3*i], 3, step[i]);
2469}
2470
2471////////////////////////////////////////////////////////////////////////////////
2472/// Compute distance from array of input points having directions specified by dirs. Store output in dists
2473
2474void TGeoConeSeg::DistFromOutside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t* step) const
2475{
2476 for (Int_t i=0; i<vecsize; i++) dists[i] = DistFromOutside(&points[3*i], &dirs[3*i], 3, step[i]);
2477}
2478
2479////////////////////////////////////////////////////////////////////////////////
2480/// Compute safe distance from each of the points in the input array.
2481/// Input: Array of point coordinates, array of statuses for these points, size of the arrays
2482/// Output: Safety values
2483
2484void TGeoConeSeg::Safety_v(const Double_t *points, const Bool_t *inside, Double_t *safe, Int_t vecsize) const
2485{
2486 for (Int_t i=0; i<vecsize; i++) safe[i] = Safety(&points[3*i], inside[i]);
2487}
ROOT::R::TRInterface & r
Definition: Object.C:4
#define b(i)
Definition: RSha256.hxx:100
#define c(i)
Definition: RSha256.hxx:101
#define s1(x)
Definition: RSha256.hxx:91
int Int_t
Definition: RtypesCore.h:43
const Bool_t kFALSE
Definition: RtypesCore.h:90
double Double_t
Definition: RtypesCore.h:57
float Float_t
Definition: RtypesCore.h:55
const Bool_t kTRUE
Definition: RtypesCore.h:89
const char Option_t
Definition: RtypesCore.h:64
#define ClassImp(name)
Definition: Rtypes.h:361
XFontStruct * id
Definition: TGX11.cxx:108
char name[80]
Definition: TGX11.cxx:109
R__EXTERN TGeoManager * gGeoManager
Definition: TGeoManager.h:600
float xmin
Definition: THbookFile.cxx:93
float ymin
Definition: THbookFile.cxx:93
float xmax
Definition: THbookFile.cxx:93
float ymax
Definition: THbookFile.cxx:93
point * points
Definition: X3DBuffer.c:22
Generic 3D primitive description class.
Definition: TBuffer3D.h:18
Int_t * fPols
Definition: TBuffer3D.h:114
UInt_t NbPols() const
Definition: TBuffer3D.h:82
UInt_t NbPnts() const
Definition: TBuffer3D.h:80
UInt_t NbSegs() const
Definition: TBuffer3D.h:81
Bool_t SectionsValid(UInt_t mask) const
Definition: TBuffer3D.h:67
@ kRawSizes
Definition: TBuffer3D.h:53
void SetSectionsValid(UInt_t mask)
Definition: TBuffer3D.h:65
Int_t * fSegs
Definition: TBuffer3D.h:113
Bool_t fLocalFrame
Definition: TBuffer3D.h:90
Bool_t SetRawSizes(UInt_t reqPnts, UInt_t reqPntsCapacity, UInt_t reqSegs, UInt_t reqSegsCapacity, UInt_t reqPols, UInt_t reqPolsCapacity)
Set kRaw tessellation section of buffer with supplied sizes.
Definition: TBuffer3D.cxx:359
Double_t * fPnts
Definition: TBuffer3D.h:112
Box class.
Definition: TGeoBBox.h:18
Double_t fDX
Definition: TGeoBBox.h:21
virtual Double_t DistFromOutside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=0) const
Compute distance from outside point to surface of the box.
Definition: TGeoBBox.cxx:430
virtual void InspectShape() const
Prints shape parameters.
Definition: TGeoBBox.cxx:793
Double_t fOrigin[3]
Definition: TGeoBBox.h:24
Double_t fDY
Definition: TGeoBBox.h:22
Double_t fDZ
Definition: TGeoBBox.h:23
virtual void FillBuffer3D(TBuffer3D &buffer, Int_t reqSections, Bool_t localFrame) const
Fills the supplied buffer, with sections in desired frame See TBuffer3D.h for explanation of sections...
Definition: TGeoBBox.cxx:1033
A phi segment of a conical tube.
Definition: TGeoCone.h:99
static void ComputeNormalS(const Double_t *point, const Double_t *dir, Double_t *norm, Double_t dz, Double_t rmin1, Double_t rmax1, Double_t rmin2, Double_t rmax2, Double_t c1, Double_t s1, Double_t c2, Double_t s2)
Compute normal to closest surface from POINT.
Definition: TGeoCone.cxx:1406
Double_t fCdfi
Definition: TGeoCone.h:111
virtual Bool_t Contains(const Double_t *point) const
test if point is inside this sphere
Definition: TGeoCone.cxx:1453
virtual TBuffer3D * MakeBuffer3D() const
Creates a TBuffer3D describing this shape.
Definition: TGeoCone.cxx:2065
virtual ~TGeoConeSeg()
destructor
Definition: TGeoCone.cxx:1257
Double_t fCm
Definition: TGeoCone.h:110
virtual void GetBoundingCylinder(Double_t *param) const
Fill vector param[4] with the bounding cylinder parameters.
Definition: TGeoCone.cxx:2003
static Double_t DistFromOutsideS(const Double_t *point, const Double_t *dir, Double_t dz, Double_t rmin1, Double_t rmax1, Double_t rmin2, Double_t rmax2, Double_t c1, Double_t s1, Double_t c2, Double_t s2, Double_t cm, Double_t sm, Double_t cdfi)
compute distance from outside point to surface of arbitrary tube
Definition: TGeoCone.cxx:1611
virtual Double_t Capacity() const
Computes capacity of the shape in [length^3].
Definition: TGeoCone.cxx:1290
virtual Int_t GetNmeshVertices() const
Return number of vertices of the mesh representation.
Definition: TGeoCone.cxx:2353
TGeoConeSeg()
Default constructor.
Definition: TGeoCone.cxx:1200
virtual Bool_t GetPointsOnSegments(Int_t npoints, Double_t *array) const
Fills array with n random points located on the line segments of the shape mesh.
Definition: TGeoCone.cxx:2403
virtual Double_t DistFromInside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=0) const
compute distance from inside point to surface of the tube segment
Definition: TGeoCone.cxx:1595
virtual void ComputeNormal(const Double_t *point, const Double_t *dir, Double_t *norm)
Compute normal to closest surface from POINT.
Definition: TGeoCone.cxx:1355
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save a primitive as a C++ statement(s) on output stream "out".
Definition: TGeoCone.cxx:2200
virtual void ComputeNormal_v(const Double_t *points, const Double_t *dirs, Double_t *norms, Int_t vecsize)
Compute the normal for an array o points so that norm.dot.dir is positive Input: Arrays of point coor...
Definition: TGeoCone.cxx:2458
virtual void Sizeof3D() const
Fill size of this 3-D object.
Definition: TGeoCone.cxx:2363
virtual void DistFromOutside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const
Compute distance from array of input points having directions specified by dirs. Store output in dist...
Definition: TGeoCone.cxx:2474
Double_t fC1
Definition: TGeoCone.h:106
void InitTrigonometry()
Init frequently used trigonometric values.
Definition: TGeoCone.cxx:1272
virtual void GetMeshNumbers(Int_t &nvert, Int_t &nsegs, Int_t &npols) const
Returns numbers of vertices, segments and polygons composing the shape mesh.
Definition: TGeoCone.cxx:2342
static Double_t SafetyS(const Double_t *point, Bool_t in, Double_t dz, Double_t rmin1, Double_t rmax1, Double_t rmin2, Double_t rmax2, Double_t phi1, Double_t phi2, Int_t skipz=0)
Static method to compute the closest distance from given point to this shape.
Definition: TGeoCone.cxx:2186
virtual Int_t DistancetoPrimitive(Int_t px, Int_t py)
compute closest distance from point px,py to each corner
Definition: TGeoCone.cxx:1904
virtual void SetDimensions(Double_t *param)
Set dimensions of the cone segment from an array.
Definition: TGeoCone.cxx:2237
Double_t fPhi1
Definition: TGeoCone.h:102
virtual void InspectShape() const
print shape parameters
Definition: TGeoCone.cxx:2047
void SetConsDimensions(Double_t dz, Double_t rmin1, Double_t rmax1, Double_t rmin2, Double_t rmax2, Double_t phi1, Double_t phi2)
Set dimensions of the cone segment.
Definition: TGeoCone.cxx:2218
Double_t fS2
Definition: TGeoCone.h:107
virtual Double_t DistFromOutside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=0) const
compute distance from outside point to surface of the tube
Definition: TGeoCone.cxx:1886
virtual void AfterStreamer()
Function called after streaming an object of this class.
Definition: TGeoCone.cxx:1264
Double_t fS1
Definition: TGeoCone.h:105
virtual void SetPoints(Double_t *points) const
Create cone segment mesh points.
Definition: TGeoCone.cxx:2252
static Double_t DistFromInsideS(const Double_t *point, const Double_t *dir, Double_t dz, Double_t rmin1, Double_t rmax1, Double_t rmin2, Double_t rmax2, Double_t c1, Double_t s1, Double_t c2, Double_t s2, Double_t cm, Double_t sm, Double_t cdfi)
compute distance from inside point to surface of the tube segment
Definition: TGeoCone.cxx:1545
virtual TGeoVolume * Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv, Double_t start, Double_t step)
Divide this cone segment shape belonging to volume "voldiv" into ndiv volumes called divname,...
Definition: TGeoCone.cxx:1919
static Double_t DistToCons(const Double_t *point, const Double_t *dir, Double_t r1, Double_t z1, Double_t r2, Double_t z2, Double_t phi1, Double_t phi2)
Static method to compute distance to a conical surface with :
Definition: TGeoCone.cxx:1473
virtual Double_t GetAxisRange(Int_t iaxis, Double_t &xlo, Double_t &xhi) const
Get range of shape for a given axis.
Definition: TGeoCone.cxx:1979
Double_t fSm
Definition: TGeoCone.h:109
virtual Double_t Safety(const Double_t *point, Bool_t in=kTRUE) const
computes the closest distance from given point to this shape, according to option.
Definition: TGeoCone.cxx:2173
virtual void ComputeBBox()
compute bounding box of the tube segment
Definition: TGeoCone.cxx:1309
virtual void SetSegsAndPols(TBuffer3D &buffer) const
Fill TBuffer3D structure for segments and polygons.
Definition: TGeoCone.cxx:2088
virtual void Safety_v(const Double_t *points, const Bool_t *inside, Double_t *safe, Int_t vecsize) const
Compute safe distance from each of the points in the input array.
Definition: TGeoCone.cxx:2484
virtual void DistFromInside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const
Compute distance from array of input points having directions specified by dirs. Store output in dist...
Definition: TGeoCone.cxx:2466
virtual void Contains_v(const Double_t *points, Bool_t *inside, Int_t vecsize) const
Check the inside status for each of the points in the array.
Definition: TGeoCone.cxx:2448
virtual const TBuffer3D & GetBuffer3D(Int_t reqSections, Bool_t localFrame) const
Fills a static 3D buffer and returns a reference.
Definition: TGeoCone.cxx:2370
Double_t fPhi2
Definition: TGeoCone.h:103
Double_t fC2
Definition: TGeoCone.h:108
virtual TGeoShape * GetMakeRuntimeShape(TGeoShape *mother, TGeoMatrix *mat) const
in case shape has some negative parameters, these has to be computed in order to fit the mother
Definition: TGeoCone.cxx:2018
Conical tube class.
Definition: TGeoCone.h:18
virtual void GetMeshNumbers(Int_t &nvert, Int_t &nsegs, Int_t &npols) const
Returns numbers of vertices, segments and polygons composing the shape mesh.
Definition: TGeoCone.cxx:1091
virtual const char * GetAxisName(Int_t iaxis) const
Returns name of axis IAXIS.
Definition: TGeoCone.cxx:618
virtual void Sizeof3D() const
Fill size of this 3-D object.
Definition: TGeoCone.cxx:1112
virtual void SetDimensions(Double_t *param)
Set cone dimensions from an array.
Definition: TGeoCone.cxx:990
virtual void GetBoundingCylinder(Double_t *param) const
Fill vector param[4] with the bounding cylinder parameters.
Definition: TGeoCone.cxx:658
static void ComputeNormalS(const Double_t *point, const Double_t *dir, Double_t *norm, Double_t dz, Double_t rmin1, Double_t rmax1, Double_t rmin2, Double_t rmax2)
Compute normal to closest surface from POINT.
Definition: TGeoCone.cxx:224
void SetConeDimensions(Double_t dz, Double_t rmin1, Double_t rmax1, Double_t rmin2, Double_t rmax2)
Set cone dimensions.
Definition: TGeoCone.cxx:936
static Double_t DistFromInsideS(const Double_t *point, const Double_t *dir, Double_t dz, Double_t rmin1, Double_t rmax1, Double_t rmin2, Double_t rmax2)
Compute distance from inside point to surface of the cone (static) Boundary safe algorithm.
Definition: TGeoCone.cxx:275
virtual ~TGeoCone()
destructor
Definition: TGeoCone.cxx:164
Double_t fRmax1
Definition: TGeoCone.h:23
Double_t fRmax2
Definition: TGeoCone.h:25
virtual void ComputeBBox()
compute bounding box of the sphere
Definition: TGeoCone.cxx:171
virtual Double_t Capacity() const
Computes capacity of the shape in [length^3].
Definition: TGeoCone.cxx:146
virtual void Safety_v(const Double_t *points, const Bool_t *inside, Double_t *safe, Int_t vecsize) const
Compute safe distance from each of the points in the input array.
Definition: TGeoCone.cxx:1190
virtual Int_t DistancetoPrimitive(Int_t px, Int_t py)
compute closest distance from point px,py to each corner
Definition: TGeoCone.cxx:546
virtual void DistFromInside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const
Compute distance from array of input points having directions specified by dirs. Store output in dist...
Definition: TGeoCone.cxx:1172
virtual Bool_t Contains(const Double_t *point) const
test if point is inside this cone
Definition: TGeoCone.cxx:261
virtual void ComputeNormal_v(const Double_t *points, const Double_t *dirs, Double_t *norms, Int_t vecsize)
Compute the normal for an array o points so that norm.dot.dir is positive Input: Arrays of point coor...
Definition: TGeoCone.cxx:1164
virtual Double_t GetAxisRange(Int_t iaxis, Double_t &xlo, Double_t &xhi) const
Get range of shape for a given axis.
Definition: TGeoCone.cxx:635
virtual const TBuffer3D & GetBuffer3D(Int_t reqSections, Bool_t localFrame) const
Fills a static 3D buffer and returns a reference.
Definition: TGeoCone.cxx:1119
virtual Int_t GetNmeshVertices() const
Return number of vertices of the mesh representation.
Definition: TGeoCone.cxx:1102
virtual void ComputeNormal(const Double_t *point, const Double_t *dir, Double_t *norm)
Compute normal to closest surface from POINT.
Definition: TGeoCone.cxx:181
static Double_t DistFromOutsideS(const Double_t *point, const Double_t *dir, Double_t dz, Double_t rmin1, Double_t rmax1, Double_t rmin2, Double_t rmax2)
Compute distance from outside point to surface of the tube Boundary safe algorithm.
Definition: TGeoCone.cxx:362
virtual void DistFromOutside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const
Compute distance from array of input points having directions specified by dirs. Store output in dist...
Definition: TGeoCone.cxx:1180
Double_t fDz
Definition: TGeoCone.h:21
TGeoCone()
Default constructor.
Definition: TGeoCone.cxx:85
virtual Double_t Safety(const Double_t *point, Bool_t in=kTRUE) const
computes the closest distance from given point to this shape, according to option.
Definition: TGeoCone.cxx:868
static void DistToCone(const Double_t *point, const Double_t *dir, Double_t dz, Double_t r1, Double_t r2, Double_t &b, Double_t &delta)
Static method to compute distance to a conical surface with :
Definition: TGeoCone.cxx:512
static Double_t SafetyS(const Double_t *point, Bool_t in, Double_t dz, Double_t rmin1, Double_t rmax1, Double_t rmin2, Double_t rmax2, Int_t skipz=0)
computes the closest distance from given point to this shape, according to option.
Definition: TGeoCone.cxx:885
virtual Double_t DistFromInside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=0) const
Compute distance from inside point to surface of the cone Boundary safe algorithm.
Definition: TGeoCone.cxx:347
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save a primitive as a C++ statement(s) on output stream "out".
Definition: TGeoCone.cxx:920
virtual TGeoVolume * Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv, Double_t start, Double_t step)
Divide this cone shape belonging to volume "voldiv" into ndiv volumes called divname,...
Definition: TGeoCone.cxx:561
virtual TBuffer3D * MakeBuffer3D() const
Creates a TBuffer3D describing this shape.
Definition: TGeoCone.cxx:766
virtual Bool_t GetPointsOnSegments(Int_t npoints, Double_t *array) const
Fills array with n random points located on the line segments of the shape mesh.
Definition: TGeoCone.cxx:703
virtual Double_t DistFromOutside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=0) const
compute distance from outside point to surface of the tube
Definition: TGeoCone.cxx:492
Double_t fRmin1
Definition: TGeoCone.h:22
Double_t fRmin2
Definition: TGeoCone.h:24
virtual void Contains_v(const Double_t *points, Bool_t *inside, Int_t vecsize) const
Check the inside status for each of the points in the array.
Definition: TGeoCone.cxx:1154
virtual void SetSegsAndPols(TBuffer3D &buffer) const
Fill TBuffer3D structure for segments and polygons.
Definition: TGeoCone.cxx:788
virtual void SetPoints(Double_t *points) const
Create cone mesh points.
Definition: TGeoCone.cxx:1003
virtual TGeoShape * GetMakeRuntimeShape(TGeoShape *mother, TGeoMatrix *mat) const
in case shape has some negative parameters, these has to be computed in order to fit the mother
Definition: TGeoCone.cxx:672
virtual void InspectShape() const
print shape parameters
Definition: TGeoCone.cxx:750
TGeoVolumeMulti * MakeVolumeMulti(const char *name, TGeoMedium *medium)
Make a TGeoVolumeMulti handling a list of volumes.
Int_t GetNsegments() const
Get number of segments approximating circles.
Geometrical transformation package.
Definition: TGeoMatrix.h:41
Node containing an offset.
Definition: TGeoNode.h:184
Base finder class for patterns.
void SetDivIndex(Int_t index)
Base abstract class for all shapes.
Definition: TGeoShape.h:26
static Double_t Big()
Definition: TGeoShape.h:88
Int_t GetBasicColor() const
Get the basic color (0-7).
Definition: TGeoShape.cxx:673
void TransformPoints(Double_t *points, UInt_t NbPoints) const
Tranform a set of points (LocalToMaster)
Definition: TGeoShape.cxx:552
void SetShapeBit(UInt_t f, Bool_t set)
Equivalent of TObject::SetBit.
Definition: TGeoShape.cxx:524
static Double_t DistToPhiMin(const Double_t *point, const Double_t *dir, Double_t s1, Double_t c1, Double_t s2, Double_t c2, Double_t sm, Double_t cm, Bool_t in=kTRUE)
compute distance from point (inside phi) to both phi planes. Return minimum.
Definition: TGeoShape.cxx:405
static Double_t SafetyPhi(const Double_t *point, Bool_t in, Double_t phi1, Double_t phi2)
Static method to compute safety w.r.t a phi corner defined by cosines/sines of the angles phi1,...
Definition: TGeoShape.cxx:464
static Bool_t IsSameWithinTolerance(Double_t a, Double_t b)
Check if two numbers differ with less than a tolerance.
Definition: TGeoShape.cxx:326
const char * GetPointerName() const
Provide a pointer name containing uid.
Definition: TGeoShape.cxx:699
Int_t ShapeDistancetoPrimitive(Int_t numpoints, Int_t px, Int_t py) const
Returns distance to shape primitive mesh.
Definition: TGeoShape.cxx:259
virtual const char * GetName() const
Get the shape name.
Definition: TGeoShape.cxx:248
static void NormalPhi(const Double_t *point, const Double_t *dir, Double_t *norm, Double_t c1, Double_t s1, Double_t c2, Double_t s2)
Static method to compute normal to phi planes.
Definition: TGeoShape.cxx:437
static Double_t SafetySeg(Double_t r, Double_t z, Double_t r1, Double_t z1, Double_t r2, Double_t z2, Bool_t outer)
Compute distance from point of coordinates (r,z) to segment (r1,z1):(r2,z2)
Definition: TGeoShape.cxx:494
@ kGeoSavePrimitive
Definition: TGeoShape.h:65
@ kGeoCone
Definition: TGeoShape.h:49
@ kGeoRunTimeShape
Definition: TGeoShape.h:41
@ kGeoConeSeg
Definition: TGeoShape.h:50
static Double_t Tolerance()
Definition: TGeoShape.h:91
static Bool_t IsCloseToPhi(Double_t epsil, const Double_t *point, Double_t c1, Double_t s1, Double_t c2, Double_t s2)
True if point is closer than epsil to one of the phi planes defined by c1,s1 or c2,...
Definition: TGeoShape.cxx:269
Bool_t TestShapeBit(UInt_t f) const
Definition: TGeoShape.h:163
Volume families.
Definition: TGeoVolume.h:252
void AddVolume(TGeoVolume *vol)
Add a volume with valid shape to the list of volumes.
TGeoVolume, TGeoVolumeMulti, TGeoVolumeAssembly are the volume classes.
Definition: TGeoVolume.h:47
void AddNodeOffset(TGeoVolume *vol, Int_t copy_no, Double_t offset=0, Option_t *option="")
Add a division node to the list of nodes.
Definition: TGeoVolume.cxx:970
TGeoMedium * GetMedium() const
Definition: TGeoVolume.h:171
void SetFinder(TGeoPatternFinder *finder)
Definition: TGeoVolume.h:229
Int_t GetNdaughters() const
Definition: TGeoVolume.h:347
TObjArray * GetNodes()
Definition: TGeoVolume.h:165
TObject * At(Int_t idx) const
Definition: TObjArray.h:166
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
Definition: TObject.h:187
virtual const char * ClassName() const
Returns name of class to which the object belongs.
Definition: TObject.cxx:128
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
Definition: TObject.cxx:877
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
Definition: TObject.cxx:694
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Definition: TObject.cxx:891
virtual void Fatal(const char *method, const char *msgfmt,...) const
Issue fatal error message.
Definition: TObject.cxx:919
Basic string class.
Definition: TString.h:131
const char * Data() const
Definition: TString.h:364
void box(Int_t pat, Double_t x1, Double_t y1, Double_t x2, Double_t y2)
Definition: fillpatterns.C:1
return c1
Definition: legend1.C:41
const Int_t n
Definition: legend1.C:16
return c2
Definition: legend2.C:14
static constexpr double sr
static constexpr double s
static constexpr double cm
Long64_t LocMin(Long64_t n, const T *a)
Return index of array with the minimum element.
Definition: TMath.h:962
Short_t Max(Short_t a, Short_t b)
Definition: TMathBase.h:212
T1 Sign(T1 a, T2 b)
Definition: TMathBase.h:165
Double_t ATan2(Double_t y, Double_t x)
Definition: TMath.h:669
Long64_t LocMax(Long64_t n, const T *a)
Return index of array with the maximum element.
Definition: TMath.h:990
constexpr Double_t DegToRad()
Conversion from degree to radian:
Definition: TMath.h:82
Double_t Sqrt(Double_t x)
Definition: TMath.h:681
Short_t Min(Short_t a, Short_t b)
Definition: TMathBase.h:180
Double_t Cos(Double_t)
Definition: TMath.h:631
constexpr Double_t Pi()
Definition: TMath.h:38
Double_t Sin(Double_t)
Definition: TMath.h:627
constexpr Double_t RadToDeg()
Conversion from radian to degree:
Definition: TMath.h:74
Short_t Abs(Short_t d)
Definition: TMathBase.h:120
constexpr Double_t TwoPi()
Definition: TMath.h:45
auto * a
Definition: textangle.C:12