Logo ROOT  
Reference Guide
tmva102_Testing.py File Reference

Namespaces

namespace  tmva102_Testing
 

Detailed Description

View in nbviewer Open in SWAN This tutorial illustrates how you can test a trained BDT model using the fast tree inference engine offered by TMVA and external tools such as scikit-learn.

import ROOT
import pickle
from tmva100_DataPreparation import variables
from tmva101_Training import load_data
# Load data
x, y_true, w = load_data("test_signal.root", "test_background.root")
# Load trained model
bdt = ROOT.TMVA.Experimental.RBDT[""]("myBDT", "tmva101.root")
# Make prediction
y_pred = bdt.Compute(x)
# Compute ROC using sklearn
from sklearn.metrics import roc_curve, auc
fpr, tpr, _ = roc_curve(y_true, y_pred, sample_weight=w)
score = auc(fpr, tpr, reorder=True)
# Plot ROC
c = ROOT.TCanvas("roc", "", 600, 600)
g = ROOT.TGraph(len(fpr), fpr, tpr)
g.SetTitle("AUC = {:.2f}".format(score))
g.SetLineWidth(3)
g.SetLineColor(ROOT.kRed)
g.Draw("AC")
g.GetXaxis().SetRangeUser(0, 1)
g.GetYaxis().SetRangeUser(0, 1)
g.GetXaxis().SetTitle("False-positive rate")
g.GetYaxis().SetTitle("True-positive rate")
c.Draw()
Date
August 2019
Author
Stefan Wunsch

Definition in file tmva102_Testing.py.