Logo ROOT  
Reference Guide
rf401_importttreethx.C File Reference

Detailed Description

View in nbviewer Open in SWAN Data and categories: advanced options for importing data from ROOT TTree and THx histograms

Basic import options are demonstrated in rf102_dataimport.C

␛[1mRooFit v3.60 -- Developed by Wouter Verkerke and David Kirkby␛[0m
Copyright (C) 2000-2013 NIKHEF, University of California & Stanford University
All rights reserved, please read http://roofit.sourceforge.net/license.txt
RooDataHist::dh[c,x] = 300 bins (2964 weights)
RooDataHist::dh[c,x] = 300 bins (2964 weights)
[#1] INFO:Eval -- RooTreeDataStore::loadValues(ds) Ignored 35 out of range events
RooDataSet::ds[x,y] = 65 entries
[#1] INFO:InputArguments -- The formula y+z<0 claims to use the variables (x,y,z) but only (y,z) seem to be in use.
inputs: y+z<0
interpretation: [y]+[z]<0
[#1] INFO:Eval -- RooTreeDataStore::loadValues(ds2) Ignored 36 out of range events
RooDataSet::ds2[x,y,z] = 26 entries
[#1] INFO:Eval -- RooAbsReal::attachToTree(i) TTree Int_t branch i will be converted to double precision
RooDataSet::ds3[i,x] = 100 entries
[#1] INFO:DataHandling -- RooAbsCategory::attachToTree(i) TTree branch i will be interpreted as category index
[#1] INFO:Eval -- RooTreeDataStore::loadValues(ds4) Ignored 33 out of range events
RooDataSet::ds4[i,x] = 67 entries
RooDataSet::dsABC[c,x,y] = 26 entries
#include "RooRealVar.h"
#include "RooDataSet.h"
#include "RooDataHist.h"
#include "RooCategory.h"
#include "RooGaussian.h"
#include "RooConstVar.h"
#include "TCanvas.h"
#include "TAxis.h"
#include "RooPlot.h"
#include "TH1.h"
#include "TTree.h"
#include "TRandom.h"
#include <map>
using namespace RooFit;
TH1 *makeTH1(const char *name, Double_t mean, Double_t sigma);
TTree *makeTTree();
void rf401_importttreethx()
{
// I m p o r t m u l t i p l e T H 1 i n t o a R o o D a t a H i s t
// --------------------------------------------------------------------------
// Create thee ROOT TH1 histograms
TH1 *hh_1 = makeTH1("hh1", 0, 3);
TH1 *hh_2 = makeTH1("hh2", -3, 1);
TH1 *hh_3 = makeTH1("hh3", +3, 4);
// Declare observable x
RooRealVar x("x", "x", -10, 10);
// Create category observable c that serves as index for the ROOT histograms
RooCategory c("c", "c");
c.defineType("SampleA");
c.defineType("SampleB");
c.defineType("SampleC");
// Create a binned dataset that imports contents of all TH1 mapped by index category c
RooDataHist *dh = new RooDataHist("dh", "dh", x, Index(c), Import("SampleA", *hh_1), Import("SampleB", *hh_2),
Import("SampleC", *hh_3));
dh->Print();
// Alternative constructor form for importing multiple histograms
map<string, TH1 *> hmap;
hmap["SampleA"] = hh_1;
hmap["SampleB"] = hh_2;
hmap["SampleC"] = hh_3;
RooDataHist *dh2 = new RooDataHist("dh", "dh", x, c, hmap);
dh2->Print();
// I m p o r t i n g a T T r e e i n t o a R o o D a t a S e t w i t h c u t s
// -----------------------------------------------------------------------------------------
TTree *tree = makeTTree();
// Define observables y,z
RooRealVar y("y", "y", -10, 10);
RooRealVar z("z", "z", -10, 10);
// Import only observables (y,z)
RooDataSet ds("ds", "ds", RooArgSet(x, y), Import(*tree));
ds.Print();
// Import observables (x,y,z) but only event for which (y+z<0) is true
RooDataSet ds2("ds2", "ds2", RooArgSet(x, y, z), Import(*tree), Cut("y+z<0"));
ds2.Print();
// I m p o r t i n g i n t e g e r T T r e e b r a n c h e s
// ---------------------------------------------------------------
// Import integer tree branch as RooRealVar
RooRealVar i("i", "i", 0, 5);
RooDataSet ds3("ds3", "ds3", RooArgSet(i, x), Import(*tree));
ds3.Print();
// Define category i
RooCategory icat("i", "i");
icat.defineType("State0", 0);
icat.defineType("State1", 1);
// Import integer tree branch as RooCategory (only events with i==0 and i==1
// will be imported as those are the only defined states)
RooDataSet ds4("ds4", "ds4", RooArgSet(icat, x), Import(*tree));
ds4.Print();
// I m p o r t m u l t i p l e R o o D a t a S e t s i n t o a R o o D a t a S e t
// ----------------------------------------------------------------------------------------
// Create three RooDataSets in (y,z)
RooDataSet *dsA = (RooDataSet *)ds2.reduce(RooArgSet(x, y), "z<-5");
RooDataSet *dsB = (RooDataSet *)ds2.reduce(RooArgSet(x, y), "abs(z)<5");
RooDataSet *dsC = (RooDataSet *)ds2.reduce(RooArgSet(x, y), "z>5");
// Create a dataset that imports contents of all the above datasets mapped by index category c
RooDataSet *dsABC = new RooDataSet("dsABC", "dsABC", RooArgSet(x, y), Index(c), Import("SampleA", *dsA),
Import("SampleB", *dsB), Import("SampleC", *dsC));
dsABC->Print();
}
TH1 *makeTH1(const char *name, Double_t mean, Double_t sigma)
{
// Create ROOT TH1 filled with a Gaussian distribution
TH1D *hh = new TH1D(name, name, 100, -10, 10);
for (int i = 0; i < 1000; i++) {
hh->Fill(gRandom->Gaus(mean, sigma));
}
return hh;
}
TTree *makeTTree()
{
// Create ROOT TTree filled with a Gaussian distribution in x and a uniform distribution in y
TTree *tree = new TTree("tree", "tree");
Double_t *px = new Double_t;
Double_t *py = new Double_t;
Double_t *pz = new Double_t;
Int_t *pi = new Int_t;
tree->Branch("x", px, "x/D");
tree->Branch("y", py, "y/D");
tree->Branch("z", pz, "z/D");
tree->Branch("i", pi, "i/I");
for (int i = 0; i < 100; i++) {
*px = gRandom->Gaus(0, 3);
*py = gRandom->Uniform() * 30 - 15;
*pz = gRandom->Gaus(0, 5);
*pi = i % 3;
tree->Fill();
}
return tree;
}
#define c(i)
Definition: RSha256.hxx:101
int Int_t
Definition: RtypesCore.h:41
double Double_t
Definition: RtypesCore.h:55
char name[80]
Definition: TGX11.cxx:109
R__EXTERN TRandom * gRandom
Definition: TRandom.h:62
RooAbsData * reduce(const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg(), const RooCmdArg &arg3=RooCmdArg(), const RooCmdArg &arg4=RooCmdArg(), const RooCmdArg &arg5=RooCmdArg(), const RooCmdArg &arg6=RooCmdArg(), const RooCmdArg &arg7=RooCmdArg(), const RooCmdArg &arg8=RooCmdArg())
Create a reduced copy of this dataset.
Definition: RooAbsData.cxx:382
virtual void Print(Option_t *options=0) const
Print TNamed name and title.
Definition: RooAbsData.h:166
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
RooCategory represents a fundamental (non-derived) discrete value object.
Definition: RooCategory.h:24
The RooDataHist is a container class to hold N-dimensional binned data.
Definition: RooDataHist.h:40
RooDataSet is a container class to hold unbinned data.
Definition: RooDataSet.h:31
RooRealVar represents a variable that can be changed from the outside.
Definition: RooRealVar.h:35
1-D histogram with a double per channel (see TH1 documentation)}
Definition: TH1.h:614
The TH1 histogram class.
Definition: TH1.h:56
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
Definition: TH1.cxx:3275
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
Definition: TRandom.cxx:263
virtual Double_t Uniform(Double_t x1=1)
Returns a uniform deviate on the interval (0, x1).
Definition: TRandom.cxx:635
A TTree represents a columnar dataset.
Definition: TTree.h:72
const Double_t sigma
Double_t y[n]
Definition: legend1.C:17
Double_t x[n]
Definition: legend1.C:17
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
RooCmdArg Index(RooCategory &icat)
RooCmdArg Import(const char *state, TH1 &histo)
RooCmdArg Cut(const char *cutSpec)
static constexpr double pi
Definition: tree.py:1
Author
07/2008 - Wouter Verkerke

Definition in file rf401_importttreethx.C.