␛[1mRooFit v3.60 -- Developed by Wouter Verkerke and David Kirkby␛[0m
Copyright (C) 2000-2013 NIKHEF, University of California & Stanford University
All rights reserved, please read http://roofit.sourceforge.net/license.txt
RooDataHist::dh[c,x] = 300 bins (2964 weights)
RooDataHist::dh[c,x] = 300 bins (2964 weights)
[#1] INFO:Eval -- RooTreeDataStore::loadValues(ds) Ignored 35 out of range events
RooDataSet::ds[x,y] = 65 entries
[#1] INFO:InputArguments -- The formula y+z<0 claims to use the variables (x,y,z) but only (y,z) seem to be in use.
inputs: y+z<0
interpretation: [y]+[z]<0
[#1] INFO:Eval -- RooTreeDataStore::loadValues(ds2) Ignored 36 out of range events
RooDataSet::ds2[x,y,z] = 26 entries
[#1] INFO:Eval -- RooAbsReal::attachToTree(i) TTree Int_t branch i will be converted to double precision
RooDataSet::ds3[i,x] = 100 entries
[#1] INFO:DataHandling -- RooAbsCategory::attachToTree(i) TTree branch i will be interpreted as category index
[#1] INFO:Eval -- RooTreeDataStore::loadValues(ds4) Ignored 33 out of range events
RooDataSet::ds4[i,x] = 67 entries
RooDataSet::dsABC[c,x,y] = 26 entries
#include <map>
void rf401_importttreethx()
{
TH1 *hh_1 = makeTH1(
"hh1", 0, 3);
TH1 *hh_2 = makeTH1(
"hh2", -3, 1);
TH1 *hh_3 = makeTH1(
"hh3", +3, 4);
map<string, TH1 *> hmap;
hmap["SampleA"] = hh_1;
hmap["SampleB"] = hh_2;
hmap["SampleC"] = hh_3;
ds.Print();
ds2.Print();
ds3.Print();
icat.defineType("State0", 0);
icat.defineType("State1", 1);
ds4.Print();
}
{
for (int i = 0; i < 1000; i++) {
}
return hh;
}
{
tree->Branch(
"x", px,
"x/D");
tree->Branch(
"y", py,
"y/D");
tree->Branch(
"z", pz,
"z/D");
for (int i = 0; i < 100; i++) {
}
}
R__EXTERN TRandom * gRandom
RooAbsData * reduce(const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg(), const RooCmdArg &arg3=RooCmdArg(), const RooCmdArg &arg4=RooCmdArg(), const RooCmdArg &arg5=RooCmdArg(), const RooCmdArg &arg6=RooCmdArg(), const RooCmdArg &arg7=RooCmdArg(), const RooCmdArg &arg8=RooCmdArg())
Create a reduced copy of this dataset.
virtual void Print(Option_t *options=0) const
Print TNamed name and title.
RooArgSet is a container object that can hold multiple RooAbsArg objects.
RooCategory represents a fundamental (non-derived) discrete value object.
The RooDataHist is a container class to hold N-dimensional binned data.
RooDataSet is a container class to hold unbinned data.
RooRealVar represents a variable that can be changed from the outside.
1-D histogram with a double per channel (see TH1 documentation)}
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
virtual Double_t Uniform(Double_t x1=1)
Returns a uniform deviate on the interval (0, x1).
A TTree represents a columnar dataset.
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
RooCmdArg Index(RooCategory &icat)
RooCmdArg Import(const char *state, TH1 &histo)
RooCmdArg Cut(const char *cutSpec)
static constexpr double pi