import ROOT
x = ROOT.RooRealVar("x", "x", 0, 10)
mean = ROOT.RooRealVar("mean", "mean of gaussians", 5)
sigma1 = ROOT.RooRealVar("sigma1", "width of gaussians", 0.5)
sigma2 = ROOT.RooRealVar("sigma2", "width of gaussians", 1)
sig1 = ROOT.RooGaussian("sig1", "Signal component 1", x, mean, sigma1)
sig2 = ROOT.RooGaussian("sig2", "Signal component 2", x, mean, sigma2)
a0 = ROOT.RooRealVar("a0", "a0", 0.5, 0., 1.)
a1 = ROOT.RooRealVar("a1", "a1", -0.2, 0., 1.)
bkg = ROOT.RooChebychev("bkg", "Background", x, ROOT.RooArgList(a0, a1))
sig1frac = ROOT.RooRealVar(
"sig1frac", "fraction of component 1 in signal", 0.8, 0., 1.)
sig = ROOT.RooAddPdf(
"sig", "Signal", ROOT.RooArgList(sig1, sig2), ROOT.RooArgList(sig1frac))
nsig = ROOT.RooRealVar("nsig", "number of signal events", 500, 0., 10000)
nbkg = ROOT.RooRealVar(
"nbkg", "number of background events", 500, 0, 10000)
model = ROOT.RooAddPdf(
"model",
"(g1+g2)+a",
ROOT.RooArgList(
bkg,
sig),
ROOT.RooArgList(
nbkg,
nsig))
data = model.generate(ROOT.RooArgSet(x))
model.fitTo(data)
xframe = x.frame(ROOT.RooFit.Title("extended ML fit example"))
data.plotOn(xframe)
model.plotOn(xframe, ROOT.RooFit.Normalization(
1.0, ROOT.RooAbsReal.RelativeExpected))
ras_bkg = ROOT.RooArgSet(bkg)
model.plotOn(
xframe, ROOT.RooFit.Components(ras_bkg), ROOT.RooFit.LineStyle(
ROOT.kDashed), ROOT.RooFit.Normalization(
1.0, ROOT.RooAbsReal.RelativeExpected))
ras_bkg_sig2 = ROOT.RooArgSet(bkg, sig2)
model.plotOn(
xframe, ROOT.RooFit.Components(ras_bkg_sig2), ROOT.RooFit.LineStyle(
ROOT.kDotted), ROOT.RooFit.Normalization(
1.0, ROOT.RooAbsReal.RelativeExpected))
model.Print("t")
esig = ROOT.RooExtendPdf("esig", "extended signal p.d.f", sig, nsig)
ebkg = ROOT.RooExtendPdf("ebkg", "extended background p.d.f", bkg, nbkg)
model2 = ROOT.RooAddPdf("model2", "(g1+g2)+a", ROOT.RooArgList(ebkg, esig))
c = ROOT.TCanvas("rf202_extendedmlfit", "rf202_extendedmlfit", 600, 600)
ROOT.gPad.SetLeftMargin(0.15)
xframe.GetYaxis().SetTitleOffset(1.4)
xframe.Draw()
c.SaveAs("rf202_extendedmlfit.png")