pdf = f_bkg * bkg(x,a0,a1) + (1-fbkg) * (f_sig1 * sig1(x,m,s1 + (1-f_sig1) * sig2(x,m,s2)))
import ROOT
x = ROOT.RooRealVar("x", "x", 0, 10)
mean = ROOT.RooRealVar("mean", "mean of gaussians", 5)
sigma1 = ROOT.RooRealVar("sigma1", "width of gaussians", 0.5)
sigma2 = ROOT.RooRealVar("sigma2", "width of gaussians", 1)
sig1 = ROOT.RooGaussian("sig1", "Signal component 1", x, mean, sigma1)
sig2 = ROOT.RooGaussian("sig2", "Signal component 2", x, mean, sigma2)
a0 = ROOT.RooRealVar("a0", "a0", 0.5, 0., 1.)
a1 = ROOT.RooRealVar("a1", "a1", -0.2, 0., 1.)
bkg = ROOT.RooChebychev("bkg", "Background", x, ROOT.RooArgList(a0, a1))
sig1frac = ROOT.RooRealVar(
"sig1frac", "fraction of component 1 in signal", 0.8, 0., 1.)
sig = ROOT.RooAddPdf("sig", "Signal", ROOT.RooArgList(
sig1, sig2), ROOT.RooArgList(sig1frac))
bkgfrac = ROOT.RooRealVar("bkgfrac", "fraction of background", 0.5, 0., 1.)
model = ROOT.RooAddPdf(
"model", "g1+g2+a", ROOT.RooArgList(bkg, sig), ROOT.RooArgList(bkgfrac))
data = model.generate(ROOT.RooArgSet(x), 1000)
model.fitTo(data)
xframe = x.frame(ROOT.RooFit.Title(
"Example of composite pdf=(sig1+sig2)+bkg"))
data.plotOn(xframe)
model.plotOn(xframe)
ras_bkg = ROOT.RooArgSet(bkg)
model.plotOn(xframe, ROOT.RooFit.Components(ras_bkg),
ROOT.RooFit.LineStyle(ROOT.kDashed))
ras_bkg_sig2 = ROOT.RooArgSet(bkg, sig2)
model.plotOn(xframe, ROOT.RooFit.Components(ras_bkg_sig2),
ROOT.RooFit.LineStyle(ROOT.kDotted))
model.Print("t")
model2 = ROOT.RooAddPdf(
"model",
"g1+g2+a",
ROOT.RooArgList(
bkg,
sig1,
sig2),
ROOT.RooArgList(
bkgfrac,
sig1frac),
ROOT.kTRUE)
model2.plotOn(xframe, ROOT.RooFit.LineColor(ROOT.kRed),
ROOT.RooFit.LineStyle(ROOT.kDashed))
model2.plotOn(
xframe,
ROOT.RooFit.Components(ras_bkg_sig2),
ROOT.RooFit.LineColor(
ROOT.kRed),
ROOT.RooFit.LineStyle(
ROOT.kDashed))
model2.Print("t")
c = ROOT.TCanvas("rf201_composite", "rf201_composite", 600, 600)
ROOT.gPad.SetLeftMargin(0.15)
xframe.GetYaxis().SetTitleOffset(1.4)
xframe.Draw()
c.SaveAs("rf201_composite.png")