Logo ROOT  
Reference Guide
pyroot002_TTreeAsMatrix.py File Reference

Namespaces

namespace  pyroot002_TTreeAsMatrix
 

Detailed Description

View in nbviewer Open in SWAN This tutorial shows how a TTree can be quickly converted to a numpy array or a pandas.DataFrame.

import ROOT
from sys import exit
try:
import numpy as np
except:
print("Failed to import numpy.")
exit()
# Helper function to create an example tree
def make_example():
root_file = ROOT.TFile("pyroot002_example.root", "RECREATE")
tree = ROOT.TTree("tree", "tutorial")
x = np.empty((1), dtype="float32")
y = np.empty((1), dtype="float32")
tree.Branch("x", x, "x/F")
tree.Branch("y", y, "y/F")
for i in range(4):
x[0] = i
y[0] = -i
tree.Fill()
root_file.Write()
return (root_file, x, y), tree
# The conversion of the TTree to a numpy array is implemented with multi-
# thread support.
ROOT.ROOT.EnableImplicitMT()
# Create a ROOT file with a tree and the branches "x" and "y"
_, tree = make_example()
# Print content of the tree by looping explicitly
print("Tree content:\n{}\n".format(
np.asarray([[tree.x, tree.y] for event in tree])))
# Read-out full tree as numpy array
array = tree.AsMatrix()
print("Tree converted to a numpy array:\n{}\n".format(array))
# Get numpy array and according labels of the columns
array, labels = tree.AsMatrix(return_labels=True)
print("Return numpy array and labels:\n{}\n{}\n".format(labels, array))
# Apply numpy methods on the data
print("Mean of the columns retrieved with a numpy method: {}\n".format(
np.mean(array, axis=0)))
# Read only specific branches
array = tree.AsMatrix(columns=["x"])
print("Only the content of the branch 'x':\n{}\n".format(np.squeeze(array)))
array = tree.AsMatrix(exclude=["x"])
print("Read all branches except 'x':\n{}\n".format(np.squeeze(array)))
# Get an array with a specific data-type
array = tree.AsMatrix(dtype="int")
print("Return numpy array with data-type 'int':\n{}\n".format(array))
## Convert the tree to a pandas.DataFrame
try:
import pandas
except:
print("Failed to import pandas.")
exit()
data, columns = tree.AsMatrix(return_labels=True)
df = pandas.DataFrame(data=data, columns=columns)
print("Tree converted to a pandas.DataFrame:\n{}".format(df))
Tree content:
[[ 0. 0.]
[ 1. -1.]
[ 2. -2.]
[ 3. -3.]]
Tree converted to a numpy array:
[[ 0. 0.]
[ 1. -1.]
[ 2. -2.]
[ 3. -3.]]
Return numpy array and labels:
['x', 'y']
[[ 0. 0.]
[ 1. -1.]
[ 2. -2.]
[ 3. -3.]]
Mean of the columns retrieved with a numpy method: [ 1.5 -1.5]
Only the content of the branch 'x':
[0. 1. 2. 3.]
Read all branches except 'x':
[ 0. -1. -2. -3.]
Return numpy array with data-type 'int':
[[ 0 0]
[ 1 -1]
[ 2 -2]
[ 3 -3]]
Tree converted to a pandas.DataFrame:
x y
0 0.0 0.0
1 1.0 -1.0
2 2.0 -2.0
3 3.0 -3.0
Date
April 2018
Author
Stefan Wunsch

Definition in file pyroot002_TTreeAsMatrix.py.