Logo ROOT  
Reference Guide
VirtualIntegrator.h
Go to the documentation of this file.
1// @(#)root/mathcore:$Id$
2// Author: Magdalena Slawinska 10/2007
3
4
5/**********************************************************************
6 * *
7 * Copyright (c) 2007 LCG ROOT Math Team, CERN/PH-SFT *
8 * *
9 * *
10 **********************************************************************/
11
12// Header file for class Minimizer
13
14#ifndef ROOT_Math_VirtualIntegrator
15#define ROOT_Math_VirtualIntegrator
16
17#include "Math/IFunctionfwd.h"
18
19#include "Math/Error.h"
20
22
23
24#include <vector>
25
26
27namespace ROOT {
28namespace Math {
29
30//___________________________________________________________________
31/**
32 Abstract class for all numerical integration methods (1D and multi-dim)
33 Interface defining the common methods for the
34 numerical integrator classes of one and multi dimensions
35 The derived class VirtualIntegratorOneDim defines the methods
36 for one-dimensional integration.
37 The derived class VirtualIntegratorMultiDim defines the method for
38 multi-dimensional integration.
39 The concrete classes for one dimension (e.g. GSLIntegrator) or
40 multi-dimension (e.g. GSLMCIntegrator) can be created using the
41 plug-in manager.
42 Users should not use directly this class but the concrete classes ROOT::Math::IntegratorOneDim or
43 ROOT::Math::IntegratorMultiDim
44
45
46 @ingroup Integration
47
48*/
50
51public:
52
53 // destructor: no operation
54 virtual ~VirtualIntegrator() {}
55
56 /**
57 set the desired relative Error
58 */
59 virtual void SetRelTolerance(double ) = 0;
60
61 /**
62 set the desired absolute Error
63 */
64 virtual void SetAbsTolerance(double ) = 0;
65
66 /**
67 return the Result of the last Integral calculation
68 */
69 virtual double Result() const = 0;
70
71 /**
72 return the estimate of the absolute Error of the last Integral calculation
73 */
74 virtual double Error() const = 0;
75
76 /**
77 return the Error Status of the last Integral calculation
78 */
79 virtual int Status() const = 0;
80
81 /**
82 return number of function evaluations in calculating the integral
83 (if integrator do not implement this function returns -1)
84 */
85 virtual int NEval() const { return -1; }
86
87
88
89
90};
91
92//___________________________________________________________________
93/**
94 Interface (abstract) class for 1D numerical integration
95 It must be implemented by the concrate Integrator classes like
96 ROOT::Math::GSLIntegrator.
97 Plug-in's exist in ROOT to be able to instantiate the derived classes via the
98 plug-in manager.
99 Users should not use directly this class but the concrete classes ROOT::Math::IntegratorOneDim.
100
101
102 @ingroup Integration
103
104*/
106
107public:
108
109 /// destructor: no operation
111
112 /// evaluate integral
113 virtual double Integral(double a, double b) = 0;
114
115 /// set integration function
116 virtual void SetFunction(const IGenFunction &) = 0;
117
118 /// evaluate un-defined integral (between -inf, + inf)
119 virtual double Integral() = 0;
120
121 /// evaluate integral over the (a, +inf)
122 virtual double IntegralUp(double a) = 0;
123
124 /// evaluate integral over the (-inf, b)
125 virtual double IntegralLow(double b) = 0;
126
127 /// evaluate integral with singular points
128 virtual double Integral( const std::vector<double> & pts) = 0;
129
130 /// evaluate Cauchy integral
131 virtual double IntegralCauchy(double a, double b, double c) = 0;
132
133 /// get the option used for the integration
134 /// must be implemented by derived class
136
137 // return type of integrator
139 return Options().IntegratorType();
140 }
141
142 /// set the options
143 /// (should be re-implemented by derived classes -if more options than tolerance exist
147 }
148
149
150
151};
152
153//___________________________________________________________________
154/**
155 Interface (abstract) class for multi numerical integration
156 It must be implemented by the concrete Integrator classes like
157 ROOT::Math::GSLMCIntegrator.
158 Plug-in's exist in ROOT to be able to instantiate the derived classes via the
159 plug-in manager.
160 Users should not use directly this class but the concrete classes ROOT::Math::IntegratorMultiDim.
161
162
163 @ingroup Integration
164
165*/
167
168public:
169
170 /// destructor: no operation
172
173 /// evaluate multi-dim integral
174 virtual double Integral(const double*, const double*) = 0;
175
176 /// setting a multi-dim function
177 virtual void SetFunction(const IMultiGenFunction &) = 0;
178
179 /// get the option used for the integration
180 /// impelement by derived class otherwise return default ones
182
183 // return type of integrator
185 return Options().IntegratorType();
186 }
187
188 /// set the options (if needed must be re-implemented by derived classes)
192 }
193
194
195};
196
197
198}//namespace Math
199}//namespace ROOT
200
201
202#endif /* ROOT_Math_VirtualIntegrator */
#define b(i)
Definition: RSha256.hxx:100
#define c(i)
Definition: RSha256.hxx:101
double RelTolerance() const
absolute tolerance
double AbsTolerance() const
non-static methods for retrivieng options
Documentation for the abstract class IBaseFunctionMultiDim.
Definition: IFunction.h:62
Interface (abstract class) for generic functions objects of one-dimension Provides a method to evalua...
Definition: IFunction.h:135
Numerical multi dimensional integration options.
IntegrationMultiDim::Type IntegratorType() const
type of the integrator (return the enumeration type)
Numerical one dimensional integration options.
IntegrationOneDim::Type IntegratorType() const
type of the integrator (return the enumeration type)
Interface (abstract) class for multi numerical integration It must be implemented by the concrete Int...
virtual ROOT::Math::IntegrationMultiDim::Type Type() const
virtual void SetOptions(const ROOT::Math::IntegratorMultiDimOptions &opt)
set the options (if needed must be re-implemented by derived classes)
virtual ~VirtualIntegratorMultiDim()
destructor: no operation
virtual double Integral(const double *, const double *)=0
evaluate multi-dim integral
virtual ROOT::Math::IntegratorMultiDimOptions Options() const =0
get the option used for the integration impelement by derived class otherwise return default ones
virtual void SetFunction(const IMultiGenFunction &)=0
setting a multi-dim function
Interface (abstract) class for 1D numerical integration It must be implemented by the concrate Integr...
virtual double Integral()=0
evaluate un-defined integral (between -inf, + inf)
virtual ROOT::Math::IntegratorOneDimOptions Options() const =0
get the option used for the integration must be implemented by derived class
virtual ROOT::Math::IntegrationOneDim::Type Type() const
virtual ~VirtualIntegratorOneDim()
destructor: no operation
virtual void SetFunction(const IGenFunction &)=0
set integration function
virtual double IntegralCauchy(double a, double b, double c)=0
evaluate Cauchy integral
virtual double IntegralLow(double b)=0
evaluate integral over the (-inf, b)
virtual void SetOptions(const ROOT::Math::IntegratorOneDimOptions &opt)
set the options (should be re-implemented by derived classes -if more options than tolerance exist
virtual double Integral(double a, double b)=0
evaluate integral
virtual double IntegralUp(double a)=0
evaluate integral over the (a, +inf)
virtual double Integral(const std::vector< double > &pts)=0
evaluate integral with singular points
Abstract class for all numerical integration methods (1D and multi-dim) Interface defining the common...
virtual void SetRelTolerance(double)=0
set the desired relative Error
virtual void SetAbsTolerance(double)=0
set the desired absolute Error
virtual double Error() const =0
return the estimate of the absolute Error of the last Integral calculation
virtual int NEval() const
return number of function evaluations in calculating the integral (if integrator do not implement thi...
virtual double Result() const =0
return the Result of the last Integral calculation
virtual int Status() const =0
return the Error Status of the last Integral calculation
Type
enumeration specifying the integration types.
Type
enumeration specifying the integration types.
Namespace for new Math classes and functions.
VSD Structures.
Definition: StringConv.hxx:21
auto * a
Definition: textangle.C:12