68 double BKMNX1 = 0.02, BKMNY1 = 0.05, BKMNX2 = 0.12, BKMNY2 = 0.05,
69 BKMNX3 = 0.22, BKMNY3 = 0.05, BKMXX1 = 0.1 , BKMXY1 = 1,
70 BKMXX2 = 0.2 , BKMXY2 = 1 , BKMXX3 = 0.3 , BKMXY3 = 1;
72 double FBKX1 = 2/(BKMXX1-BKMNX1), FBKX2 = 2/(BKMXX2-BKMNX2),
73 FBKX3 = 2/(BKMXX3-BKMNX3), FBKY1 = 2/(BKMXY1-BKMNY1),
74 FBKY2 = 2/(BKMXY2-BKMNY2), FBKY3 = 2/(BKMXY3-BKMNY3);
76 double FNINV[] = {0, 1, 0.5, 0.33333333, 0.25, 0.2};
78 double EDGEC[]= {0, 0, 0.16666667e+0, 0.41666667e-1, 0.83333333e-2,
79 0.13888889e-1, 0.69444444e-2, 0.77160493e-3};
81 double U1[] = {0, 0.25850868e+0, 0.32477982e-1, -0.59020496e-2,
82 0. , 0.24880692e-1, 0.47404356e-2,
83 -0.74445130e-3, 0.73225731e-2, 0. ,
84 0.11668284e-2, 0. , -0.15727318e-2,-0.11210142e-2};
86 double U2[] = {0, 0.43142611e+0, 0.40797543e-1, -0.91490215e-2,
87 0. , 0.42127077e-1, 0.73167928e-2,
88 -0.14026047e-2, 0.16195241e-1, 0.24714789e-2,
89 0.20751278e-2, 0. , -0.25141668e-2,-0.14064022e-2};
91 double U3[] = {0, 0.25225955e+0, 0.64820468e-1, -0.23615759e-1,
92 0. , 0.23834176e-1, 0.21624675e-2,
93 -0.26865597e-2, -0.54891384e-2, 0.39800522e-2,
94 0.48447456e-2, -0.89439554e-2, -0.62756944e-2,-0.24655436e-2};
96 double U4[] = {0, 0.12593231e+1, -0.20374501e+0, 0.95055662e-1,
97 -0.20771531e-1, -0.46865180e-1, -0.77222986e-2,
98 0.32241039e-2, 0.89882920e-2, -0.67167236e-2,
99 -0.13049241e-1, 0.18786468e-1, 0.14484097e-1};
101 double U5[] = {0, -0.24864376e-1, -0.10368495e-2, 0.14330117e-2,
102 0.20052730e-3, 0.18751903e-2, 0.12668869e-2,
103 0.48736023e-3, 0.34850854e-2, 0. ,
104 -0.36597173e-3, 0.19372124e-2, 0.70761825e-3, 0.46898375e-3};
106 double U6[] = {0, 0.35855696e-1, -0.27542114e-1, 0.12631023e-1,
107 -0.30188807e-2, -0.84479939e-3, 0. ,
108 0.45675843e-3, -0.69836141e-2, 0.39876546e-2,
109 -0.36055679e-2, 0. , 0.15298434e-2, 0.19247256e-2};
111 double U7[] = {0, 0.10234691e+2, -0.35619655e+1, 0.69387764e+0,
112 -0.14047599e+0, -0.19952390e+1, -0.45679694e+0,
114 double U8[] = {0, 0.21487518e+2, -0.11825253e+2, 0.43133087e+1,
115 -0.14500543e+1, -0.34343169e+1, -0.11063164e+1,
116 -0.21000819e+0, 0.17891643e+1, -0.89601916e+0,
117 0.39120793e+0, 0.73410606e+0, 0. ,-0.32454506e+0};
119 double V1[] = {0, 0.27827257e+0, -0.14227603e-2, 0.24848327e-2,
120 0. , 0.45091424e-1, 0.80559636e-2,
121 -0.38974523e-2, 0. , -0.30634124e-2,
122 0.75633702e-3, 0.54730726e-2, 0.19792507e-2};
124 double V2[] = {0, 0.41421789e+0, -0.30061649e-1, 0.52249697e-2,
125 0. , 0.12693873e+0, 0.22999801e-1,
126 -0.86792801e-2, 0.31875584e-1, -0.61757928e-2,
127 0. , 0.19716857e-1, 0.32596742e-2};
129 double V3[] = {0, 0.20191056e+0, -0.46831422e-1, 0.96777473e-2,
130 -0.17995317e-2, 0.53921588e-1, 0.35068740e-2,
131 -0.12621494e-1, -0.54996531e-2, -0.90029985e-2,
132 0.34958743e-2, 0.18513506e-1, 0.68332334e-2,-0.12940502e-2};
134 double V4[] = {0, 0.13206081e+1, 0.10036618e+0, -0.22015201e-1,
135 0.61667091e-2, -0.14986093e+0, -0.12720568e-1,
136 0.24972042e-1, -0.97751962e-2, 0.26087455e-1,
137 -0.11399062e-1, -0.48282515e-1, -0.98552378e-2};
139 double V5[] = {0, 0.16435243e-1, 0.36051400e-1, 0.23036520e-2,
140 -0.61666343e-3, -0.10775802e-1, 0.51476061e-2,
141 0.56856517e-2, -0.13438433e-1, 0. ,
142 0. , -0.25421507e-2, 0.20169108e-2,-0.15144931e-2};
144 double V6[] = {0, 0.33432405e-1, 0.60583916e-2, -0.23381379e-2,
145 0.83846081e-3, -0.13346861e-1, -0.17402116e-2,
146 0.21052496e-2, 0.15528195e-2, 0.21900670e-2,
147 -0.13202847e-2, -0.45124157e-2, -0.15629454e-2, 0.22499176e-3};
149 double V7[] = {0, 0.54529572e+1, -0.90906096e+0, 0.86122438e-1,
150 0. , -0.12218009e+1, -0.32324120e+0,
151 -0.27373591e-1, 0.12173464e+0, 0. ,
154 double V8[] = {0, 0.93841352e+1, -0.16276904e+1, 0.16571423e+0,
155 0. , -0.18160479e+1, -0.50919193e+0,
156 -0.51384654e-1, 0.21413992e+0, 0. ,
159 double W1[] = {0, 0.29712951e+0, 0.97572934e-2, 0. ,
160 -0.15291686e-2, 0.35707399e-1, 0.96221631e-2,
161 -0.18402821e-2, -0.49821585e-2, 0.18831112e-2,
162 0.43541673e-2, 0.20301312e-2, -0.18723311e-2,-0.73403108e-3};
164 double W2[] = {0, 0.40882635e+0, 0.14474912e-1, 0.25023704e-2,
165 -0.37707379e-2, 0.18719727e+0, 0.56954987e-1,
166 0. , 0.23020158e-1, 0.50574313e-2,
167 0.94550140e-2, 0.19300232e-1};
169 double W3[] = {0, 0.16861629e+0, 0. , 0.36317285e-2,
170 -0.43657818e-2, 0.30144338e-1, 0.13891826e-1,
171 -0.58030495e-2, -0.38717547e-2, 0.85359607e-2,
172 0.14507659e-1, 0.82387775e-2, -0.10116105e-1,-0.55135670e-2};
174 double W4[] = {0, 0.13493891e+1, -0.26863185e-2, -0.35216040e-2,
175 0.24434909e-1, -0.83447911e-1, -0.48061360e-1,
176 0.76473951e-2, 0.24494430e-1, -0.16209200e-1,
177 -0.37768479e-1, -0.47890063e-1, 0.17778596e-1, 0.13179324e-1};
179 double W5[] = {0, 0.10264945e+0, 0.32738857e-1, 0. ,
180 0.43608779e-2, -0.43097757e-1, -0.22647176e-2,
181 0.94531290e-2, -0.12442571e-1, -0.32283517e-2,
182 -0.75640352e-2, -0.88293329e-2, 0.52537299e-2, 0.13340546e-2};
184 double W6[] = {0, 0.29568177e-1, -0.16300060e-2, -0.21119745e-3,
185 0.23599053e-2, -0.48515387e-2, -0.40797531e-2,
186 0.40403265e-3, 0.18200105e-2, -0.14346306e-2,
187 -0.39165276e-2, -0.37432073e-2, 0.19950380e-2, 0.12222675e-2};
189 double W8[] = {0, 0.66184645e+1, -0.73866379e+0, 0.44693973e-1,
190 0. , -0.14540925e+1, -0.39529833e+0,
191 -0.44293243e-1, 0.88741049e-1};
194 if (fKappa <0.01 || fKappa >12) {
195 std::cerr <<
"VavilovFast::set: illegal value of kappa=" << kappa << std::endl;
204 double x,
y, xx, yy,
x2,
x3, y2, y3,
xy, p2, p3, q2, q3, pq;
214 for (j=1; j<=4; j++) {
215 DRK[j+1] = DRK[1]*DRK[j];
216 DSIGM[j+1] = DSIGM[1]*DSIGM[j];
217 ALFA[j+1] = (FNINV[j]-
fBeta2*FNINV[j+1])*DRK[j];
221 fHC[2]=ALFA[3]*DSIGM[3];
222 fHC[3]=(3*ALFA[2]*ALFA[2] + ALFA[4])*DSIGM[4]-3;
223 fHC[4]=(10*ALFA[2]*ALFA[3]+ALFA[5])*DSIGM[5]-10*
fHC[2];
248 fAC[1] = W1[1] + W1[2]*
x + W1[4]*
x3 + W1[5]*
y + W1[6]*y2 + W1[7]*y3 +
249 W1[8]*
xy + W1[9]*p2 + W1[10]*p3 + W1[11]*q2 + W1[12]*q3 + W1[13]*pq;
250 fAC[2] = W2[1] + W2[2]*
x + W2[3]*
x2 + W2[4]*
x3 + W2[5]*
y + W2[6]*y2 +
251 W2[8]*
xy + W2[9]*p2 + W2[10]*p3 + W2[11]*q2;
252 fAC[3] = W3[1] + W3[3]*
x2 + W3[4]*
x3 + W3[5]*
y + W3[6]*y2 + W3[7]*y3 +
253 W3[8]*
xy + W3[9]*p2 + W3[10]*p3 + W3[11]*q2 + W3[12]*q3 + W3[13]*pq;
254 fAC[4] = W4[1] + W4[2]*
x + W4[3]*
x2 + W4[4]*
x3 + W4[5]*
y + W4[6]*y2 + W4[7]*y3 +
255 W4[8]*
xy + W4[9]*p2 + W4[10]*p3 + W4[11]*q2 + W4[12]*q3 + W4[13]*pq;
256 fAC[5] = W5[1] + W5[2]*
x + W5[4]*
x3 + W5[5]*
y + W5[6]*y2 + W5[7]*y3 +
257 W5[8]*
xy + W5[9]*p2 + W5[10]*p3 + W5[11]*q2 + W5[12]*q3 + W5[13]*pq;
258 fAC[6] = W6[1] + W6[2]*
x + W6[3]*
x2 + W6[4]*
x3 + W6[5]*
y + W6[6]*y2 + W6[7]*y3 +
259 W6[8]*
xy + W6[9]*p2 + W6[10]*p3 + W6[11]*q2 + W6[12]*q3 + W6[13]*pq;
260 fAC[8] = W8[1] + W8[2]*
x + W8[3]*
x2 + W8[5]*
y + W8[6]*y2 + W8[7]*y3 + W8[8]*
xy;
262 }
else if (
fKappa >= 0.12) {
279 fAC[1] = V1[1] + V1[2]*
x + V1[3]*
x2 + V1[5]*
y + V1[6]*y2 + V1[7]*y3 +
280 V1[9]*p2 + V1[10]*p3 + V1[11]*q2 + V1[12]*q3;
281 fAC[2] = V2[1] + V2[2]*
x + V2[3]*
x2 + V2[5]*
y + V2[6]*y2 + V2[7]*y3 +
282 V2[8]*
xy + V2[9]*p2 + V2[11]*q2 + V2[12]*q3;
283 fAC[3] = V3[1] + V3[2]*
x + V3[3]*
x2 + V3[4]*
x3 + V3[5]*
y + V3[6]*y2 + V3[7]*y3 +
284 V3[8]*
xy + V3[9]*p2 + V3[10]*p3 + V3[11]*q2 + V3[12]*q3 + V3[13]*pq;
285 fAC[4] = V4[1] + V4[2]*
x + V4[3]*
x2 + V4[4]*
x3 + V4[5]*
y + V4[6]*y2 + V4[7]*y3 +
286 V4[8]*
xy + V4[9]*p2 + V4[10]*p3 + V4[11]*q2 + V4[12]*q3;
287 fAC[5] = V5[1] + V5[2]*
x + V5[3]*
x2 + V5[4]*
x3 + V5[5]*
y + V5[6]*y2 + V5[7]*y3 +
288 V5[8]*
xy + V5[11]*q2 + V5[12]*q3 + V5[13]*pq;
289 fAC[6] = V6[1] + V6[2]*
x + V6[3]*
x2 + V6[4]*
x3 + V6[5]*
y + V6[6]*y2 + V6[7]*y3 +
290 V6[8]*
xy + V6[9]*p2 + V6[10]*p3 + V6[11]*q2 + V6[12]*q3 + V6[13]*pq;
291 fAC[7] = V7[1] + V7[2]*
x + V7[3]*
x2 + V7[5]*
y + V7[6]*y2 + V7[7]*y3 +
292 V7[8]*
xy + V7[11]*q2;
293 fAC[8] = V8[1] + V8[2]*
x + V8[3]*
x2 + V8[5]*
y + V8[6]*y2 + V8[7]*y3 +
294 V8[8]*
xy + V8[11]*q2;
315 fAC[1] = U1[1] + U1[2]*
x + U1[3]*
x2 + U1[5]*
y + U1[6]*y2 + U1[7]*y3 +
316 U1[8]*
xy + U1[10]*p3 + U1[12]*q3 + U1[13]*pq;
317 fAC[2] = U2[1] + U2[2]*
x + U2[3]*
x2 + U2[5]*
y + U2[6]*y2 + U2[7]*y3 +
318 U2[8]*
xy + U2[9]*p2 + U2[10]*p3 + U2[12]*q3 + U2[13]*pq;
319 fAC[3] = U3[1] + U3[2]*
x + U3[3]*
x2 + U3[5]*
y + U3[6]*y2 + U3[7]*y3 +
320 U3[8]*
xy + U3[9]*p2 + U3[10]*p3 + U3[11]*q2 + U3[12]*q3 + U3[13]*pq;
321 fAC[4] = U4[1] + U4[2]*
x + U4[3]*
x2 + U4[4]*
x3 + U4[5]*
y + U4[6]*y2 + U4[7]*y3 +
322 U4[8]*
xy + U4[9]*p2 + U4[10]*p3 + U4[11]*q2 + U4[12]*q3;
323 fAC[5] = U5[1] + U5[2]*
x + U5[3]*
x2 + U5[4]*
x3 + U5[5]*
y + U5[6]*y2 + U5[7]*y3 +
324 U5[8]*
xy + U5[10]*p3 + U5[11]*q2 + U5[12]*q3 + U5[13]*pq;
325 fAC[6] = U6[1] + U6[2]*
x + U6[3]*
x2 + U6[4]*
x3 + U6[5]*
y + U6[7]*y3 +
326 U6[8]*
xy + U6[9]*p2 + U6[10]*p3 + U6[12]*q3 + U6[13]*pq;
327 fAC[7] = U7[1] + U7[2]*
x + U7[3]*
x2 + U7[4]*
x3 + U7[5]*
y + U7[6]*y2 + U7[8]*
xy;
329 fAC[8] = U8[1] + U8[2]*
x + U8[3]*
x2 + U8[4]*
x3 + U8[5]*
y + U8[6]*y2 + U8[7]*y3 +
330 U8[8]*
xy + U8[9]*p2 + U8[10]*p3 + U8[11]*q2 + U8[13]*pq;
352 for (k=1; k<=
fNpt; k++) {
359 for (k=1; k<=
fNpt; k++)
375 double xx = (
x +
fHC[0])*
fHC[1];
378 for (k=2; k<=8; k++) {
380 h[k+1] = xx*
h[k]-fn*
h[k-1];
382 double s = 1 +
fHC[7]*
h[9];
428 if (
x <
fAC[0])
v = 0;
429 else if (
x >=
fAC[8])
v = 1;
432 int k = int (xx*
fAC[10]);
480 if (z < 0 || z > 1)
return std::numeric_limits<double>::signaling_NaN();
484 double t = 2*z/
fAC[9];
485 double rlam =
fAC[0];
490 for (
int n = 1;
n <=
fNpt; ++
n) {
494 double x = (rlam+
fHC[0])*
fHC[1];
497 for (
int k = 2; k <= 8; ++k) {
499 h[k+1] =
x*
h[k]-fn*
h[k-1];
501 double y = 1+
fHC[7]*
h[9];
502 for (
int k = 2; k <= 6; ++k) {
508 double x = rlam*rlam;
514 double x = rlam*rlam;
530 double v = rlam-
fAC[9];
541 if (z < 0 || z > 1)
return std::numeric_limits<double>::signaling_NaN();
579 return vavilov->
Pdf (
x);
584 return vavilov->
Cdf (
x);
589 return vavilov->
Cdf_c (
x);
static const double x2[5]
static const double x3[11]
Class describing a Vavilov distribution.
double Cdf(double x) const
Evaluate the Vavilov cumulative probability density function.
static VavilovFast * fgInstance
virtual double GetKappa() const
Return the current value of .
virtual double GetLambdaMax() const
Return the maximum value of for which is nonzero in the current approximation.
virtual ~VavilovFast()
Destructor.
double Cdf_c(double x) const
Evaluate the Vavilov complementary cumulative probability density function.
virtual double GetBeta2() const
Return the current value of .
double Quantile_c(double z) const
Evaluate the inverse of the complementary Vavilov cumulative probability density function.
double Pdf(double x) const
Evaluate the Vavilov probability density function.
double Quantile(double z) const
Evaluate the inverse of the Vavilov cumulative probability density function.
VavilovFast(double kappa=1, double beta2=1)
Initialize an object to calculate the Vavilov distribution.
virtual void SetKappaBeta2(double kappa, double beta2)
Change and and recalculate coefficients if necessary.
virtual double GetLambdaMin() const
Return the minimum value of for which is nonzero in the current approximation.
static VavilovFast * GetInstance()
Returns a static instance of class VavilovFast.
double vavilov_fast_pdf(double x, double kappa, double beta2)
The Vavilov probability density function.
double landau_pdf(double x, double xi=1, double x0=0)
Probability density function of the Landau distribution:
double vavilov_fast_cdf(double x, double kappa, double beta2)
The Vavilov cumulative probability density function.
double vavilov_fast_cdf_c(double x, double kappa, double beta2)
The Vavilov complementary cumulative probability density function.
double landau_cdf(double x, double xi=1, double x0=0)
Cumulative distribution function of the Landau distribution (lower tail).
double vavilov_fast_quantile(double z, double kappa, double beta2)
The inverse of the Vavilov cumulative probability density function.
double vavilov_fast_quantile_c(double z, double kappa, double beta2)
The inverse of the complementary Vavilov cumulative probability density function.
Namespace for new Math classes and functions.
static constexpr double s