As input data is used a toy-MC sample consisting of four Gaussian-distributed and linearly correlated input variables.
The methods to be used can be switched on and off by means of booleans, or via the prompt command, for example:
(note that the backslashes are mandatory) If no method given, a default set is used.
The output file "TMVAReg.root" can be analysed with the use of dedicated macros (simply say: root -l <macro.C>), which can be conveniently invoked through a GUI that will appear at the end of the run of this macro.
==> Start TMVARegression
create data set info dataset
--- TMVARegression : Using input file: ./files/tmva_reg_example.root
DataSetInfo : [dataset] : Added class "Regression"
: Add Tree TreeR of type Regression with 10000 events
: Dataset[dataset] : Class index : 0 name : Regression
Factory : Booking method: ␛[1mPDEFoam␛[0m
:
: Building event vectors for type 2 Regression
: Dataset[dataset] : create input formulas for tree TreeR
DataSetFactory : [dataset] : Number of events in input trees
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Regression -- training events : 1000
: Regression -- testing events : 9000
: Regression -- training and testing events: 10000
:
DataSetInfo : Correlation matrix (Regression):
: ------------------------
: var1 var2
: var1: +1.000 +0.006
: var2: +0.006 +1.000
: ------------------------
DataSetFactory : [dataset] :
:
Factory : Booking method: ␛[1mKNN␛[0m
:
Factory : Booking method: ␛[1mLD␛[0m
:
Factory : Booking method: ␛[1mDNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=SUMOFSQUARES:VarTransform=G:WeightInitialization=XAVIERUNIFORM:Architecture=CPU:Layout=TANH|50,Layout=TANH|50,Layout=TANH|50,LINEAR:TrainingStrategy=LearningRate=1e-2,Momentum=0.5,Repetitions=1,ConvergenceSteps=20,BatchSize=50,TestRepetitions=10,WeightDecay=0.01,Regularization=NONE,DropConfig=0.2+0.2+0.2+0.,DropRepetitions=2|LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=20,BatchSize=50,TestRepetitions=5,WeightDecay=0.01,Regularization=L2,DropConfig=0.1+0.1+0.1,DropRepetitions=1|LearningRate=1e-4,Momentum=0.3,Repetitions=1,ConvergenceSteps=10,BatchSize=50,TestRepetitions=5,WeightDecay=0.01,Regularization=NONE"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=SUMOFSQUARES:VarTransform=G:WeightInitialization=XAVIERUNIFORM:Architecture=CPU:Layout=TANH|50,Layout=TANH|50,Layout=TANH|50,LINEAR:TrainingStrategy=LearningRate=1e-2,Momentum=0.5,Repetitions=1,ConvergenceSteps=20,BatchSize=50,TestRepetitions=10,WeightDecay=0.01,Regularization=NONE,DropConfig=0.2+0.2+0.2+0.,DropRepetitions=2|LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=20,BatchSize=50,TestRepetitions=5,WeightDecay=0.01,Regularization=L2,DropConfig=0.1+0.1+0.1,DropRepetitions=1|LearningRate=1e-4,Momentum=0.3,Repetitions=1,ConvergenceSteps=10,BatchSize=50,TestRepetitions=5,WeightDecay=0.01,Regularization=NONE"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "G" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "TANH|50,Layout=TANH|50,Layout=TANH|50,LINEAR" [Layout of the network.]
: ErrorStrategy: "SUMOFSQUARES" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIERUNIFORM" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-2,Momentum=0.5,Repetitions=1,ConvergenceSteps=20,BatchSize=50,TestRepetitions=10,WeightDecay=0.01,Regularization=NONE,DropConfig=0.2+0.2+0.2+0.,DropRepetitions=2|LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=20,BatchSize=50,TestRepetitions=5,WeightDecay=0.01,Regularization=L2,DropConfig=0.1+0.1+0.1,DropRepetitions=1|LearningRate=1e-4,Momentum=0.3,Repetitions=1,ConvergenceSteps=10,BatchSize=50,TestRepetitions=5,WeightDecay=0.01,Regularization=NONE" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
DNN_CPU : [dataset] : Create Transformation "G" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Preparing the Gaussian transformation...
TFHandler_DNN_CPU : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.012586 1.0260 [ -3.3377 5.7307 ]
: var2: 0.0043504 1.0383 [ -4.5564 5.7307 ]
: fvalue: 165.93 84.643 [ 2.0973 391.01 ]
: -----------------------------------------------------------
Parsed Training DNN string LearningRate=1e-2,Momentum=0.5,Repetitions=1,ConvergenceSteps=20,BatchSize=50,TestRepetitions=10,WeightDecay=0.01,Regularization=NONE,DropConfig=0.2+0.2+0.2+0.,DropRepetitions=2|LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=20,BatchSize=50,TestRepetitions=5,WeightDecay=0.01,Regularization=L2,DropConfig=0.1+0.1+0.1,DropRepetitions=1|LearningRate=1e-4,Momentum=0.3,Repetitions=1,ConvergenceSteps=10,BatchSize=50,TestRepetitions=5,WeightDecay=0.01,Regularization=NONE
STring has size 3
Factory : Booking method: ␛[1mBDTG␛[0m
:
<WARNING> : Value for option maxdepth was previously set to 3
: the option NegWeightTreatment=InverseBoostNegWeights does not exist for BoostType=Grad
: --> change to new default NegWeightTreatment=Pray
Factory : ␛[1mTrain all methods␛[0m
Factory : [dataset] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 3.3759 1.1674 [ 0.0058046 4.9975 ]
: var2: 2.4823 1.4587 [ 0.0032142 4.9971 ]
: fvalue: 165.93 84.643 [ 2.0973 391.01 ]
: -----------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: --------------------------------------------
: Rank : Variable : |Correlation with target|
: --------------------------------------------
: 1 : var2 : 7.636e-01
: 2 : var1 : 5.936e-01
: --------------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------
: Rank : Variable : Mutual information
: -------------------------------------
: 1 : var2 : 2.315e+00
: 2 : var1 : 1.882e+00
: -------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ------------------------------------
: Rank : Variable : Correlation Ratio
: ------------------------------------
: 1 : var1 : 6.545e+00
: 2 : var2 : 2.414e+00
: ------------------------------------
IdTransformation : Ranking result (top variable is best ranked)
: ----------------------------------------
: Rank : Variable : Correlation Ratio (T)
: ----------------------------------------
: 1 : var2 : 8.189e-01
: 2 : var1 : 3.128e-01
: ----------------------------------------
Factory : Train method: PDEFoam for Regression
:
: Build mono target regression foam
: Elapsed time: 0.605 sec
: Elapsed time for training with 1000 events: 0.612 sec
: Dataset[dataset] : Create results for training
: Dataset[dataset] : Evaluation of PDEFoam on training sample
: Dataset[dataset] : Elapsed time for evaluation of 1000 events: 0.00525 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: ␛[0;36mdataset/weights/TMVARegression_PDEFoam.weights.xml␛[0m
: writing foam MonoTargetRegressionFoam to file
: Foams written to file: ␛[0;36mdataset/weights/TMVARegression_PDEFoam.weights_foams.root␛[0m
Factory : Training finished
:
Factory : Train method: KNN for Regression
:
KNN : <Train> start...
: Reading 1000 events
: Number of signal events 1000
: Number of background events 0
: Creating kd-tree with 1000 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 2 variables with 1000 values
: <Fill> Class 1 has 1000 events
: Elapsed time for training with 1000 events: 0.00144 sec
: Dataset[dataset] : Create results for training
: Dataset[dataset] : Evaluation of KNN on training sample
: Dataset[dataset] : Elapsed time for evaluation of 1000 events: 0.00764 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: ␛[0;36mdataset/weights/TMVARegression_KNN.weights.xml␛[0m
Factory : Training finished
:
Factory : Train method: LD for Regression
:
LD : Results for LD coefficients:
: -----------------------
: Variable: Coefficient:
: -----------------------
: var1: +42.509
: var2: +44.738
: (offset): -88.627
: -----------------------
: Elapsed time for training with 1000 events: 0.000373 sec
: Dataset[dataset] : Create results for training
: Dataset[dataset] : Evaluation of LD on training sample
: Dataset[dataset] : Elapsed time for evaluation of 1000 events: 0.000578 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: ␛[0;36mdataset/weights/TMVARegression_LD.weights.xml␛[0m
Factory : Training finished
:
Factory : Train method: DNN_CPU for Regression
:
TFHandler_DNN_CPU : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.012586 1.0260 [ -3.3377 5.7307 ]
: var2: 0.0043504 1.0383 [ -4.5564 5.7307 ]
: fvalue: 165.93 84.643 [ 2.0973 391.01 ]
: -----------------------------------------------------------
: Start of neural network training on CPU.
:
: Training phase 1 of 3:
: Epoch | Train Err. Test Err. GFLOP/s Conv. Steps
: --------------------------------------------------------------
: 10 | 1496.83 1224.76 1.73552 0
: 20 | 953.759 1119.18 1.7385 0
: 30 | 2889.57 2151.09 1.74086 10
: 40 | 1276.06 1106.05 1.71931 0
: 50 | 1866.81 1351.93 1.65446 10
: 60 | 2386.5 1998.55 1.5303 20
:
: Training phase 2 of 3:
: Epoch | Train Err. Test Err. GFLOP/s Conv. Steps
: --------------------------------------------------------------
: 5 | 9378.45 1440.63 1.81502 0
: 10 | 8814.92 1240.25 1.81667 0
: 15 | 8499.09 1191.97 1.81369 0
: 20 | 9230.29 1563.43 1.81355 5
: 25 | 10185.5 2726.69 1.81445 10
: 30 | 9515.84 2382.06 1.81989 15
: 35 | 8752.12 2328.03 1.81997 20
:
: Training phase 3 of 3:
: Epoch | Train Err. Test Err. GFLOP/s Conv. Steps
: --------------------------------------------------------------
: 5 | 1639.75 2225.24 1.93602 0
: 10 | 1602.13 2174.71 1.9262 0
: 15 | 1597.74 2162.76 1.92599 0
: 20 | 1593.52 2151.87 1.9345 0
: 25 | 1589.5 2142.42 1.92683 0
: 30 | 1585.72 2133.98 1.92486 0
: 35 | 1582.31 2126.31 1.92411 0
: 40 | 1578.64 2117.58 1.93134 0
: 45 | 1575.32 2109.75 1.91916 0
: 50 | 1572.06 2102.06 1.92511 0
: 55 | 1569.01 2095.62 1.92588 0
: 60 | 1565.91 2088.35 1.93008 0
: 65 | 1563.3 2081.9 1.92602 0
: 70 | 1560.21 2075.21 1.92309 0
: 75 | 1557.5 2068.98 1.9304 0
: 80 | 1554.88 2062.7 1.92592 0
: 85 | 1552.54 2056.95 1.92538 0
: 90 | 1549.82 2051.08 1.92534 0
: 95 | 1547.33 2045.48 1.92632 0
: 100 | 1544.82 2039.78 1.92873 0
: 105 | 1542.56 2034.65 1.92753 0
: 110 | 1540.97 2029.84 1.92827 0
: 115 | 1538.93 2025.02 1.92447 0
: 120 | 1536.87 2020.63 1.92691 0
: 125 | 1534.91 2015.82 1.92677 0
: 130 | 1533.01 2011.56 1.9264 0
: 135 | 1531.2 2007.51 1.92319 0
: 140 | 1529.41 2003.06 1.92062 0
: 145 | 1527.69 1999.19 1.91855 0
: 150 | 1526.01 1995.2 1.91528 0
: 155 | 1524.36 1990.81 1.92645 0
: 160 | 1522.77 1987.42 1.9253 0
: 165 | 1521.22 1983.95 1.92781 0
: 170 | 1519.7 1980.13 1.92439 0
: 175 | 1518.27 1976.29 1.92614 0
: 180 | 1516.88 1972.84 1.92788 0
: 185 | 1515.46 1969.8 1.92962 0
: 190 | 1514.09 1966.43 1.92442 0
: 195 | 1512.77 1963.25 1.92313 0
: 200 | 1511.5 1960.33 1.92709 0
: 205 | 1510.25 1957.01 1.92189 0
: 210 | 1509.04 1954.27 1.7556 0
: 215 | 1507.88 1951.21 1.92162 0
: 220 | 1506.71 1948.31 1.92763 0
: 225 | 1505.75 1945.76 1.92314 0
: 230 | 1504.49 1942.83 1.91933 0
: 235 | 1503.42 1939.87 1.93165 0
: 240 | 1502.38 1937.35 1.92612 0
: 245 | 1501.38 1934.79 1.91787 0
: 250 | 1500.39 1932.49 1.91935 0
: 255 | 1499.43 1929.66 1.93179 0
: 260 | 1498.49 1927.43 1.92063 0
: 265 | 1497.62 1925.19 1.92372 0
: 270 | 1496.7 1922.89 1.92464 0
: 275 | 1495.91 1920.38 1.91889 0
: 280 | 1494.94 1918.12 1.9202 0
: 285 | 1494.11 1916.35 1.92085 5
: 290 | 1493.29 1914.02 1.9285 0
: 295 | 1492.51 1911.56 1.92811 0
: 300 | 1491.72 1909.55 1.92504 0
: 305 | 1491 1907.29 1.92691 0
: 310 | 1490.22 1905.63 1.92592 5
: 315 | 1489.49 1903.66 1.92085 0
: 320 | 1488.77 1901.54 1.9247 0
: 325 | 1488.08 1899.74 1.92468 5
: 330 | 1487.42 1897.79 1.92645 0
: 335 | 1486.74 1896.13 1.92602 5
: 340 | 1486.12 1894.49 1.92173 0
: 345 | 1485.47 1892.26 1.92558 0
: 350 | 1484.83 1890.64 1.9288 5
: 355 | 1484.23 1888.85 1.92233 0
: 360 | 1483.65 1887.04 1.93237 5
: 365 | 1483.06 1885.23 1.93264 0
: 370 | 1482.45 1883.76 1.92285 5
: 375 | 1481.89 1882.06 1.92148 0
: 380 | 1481.37 1880.77 1.92774 5
: 385 | 1480.8 1878.91 1.92337 0
: 390 | 1480.28 1877.53 1.92459 5
: 395 | 1479.77 1876.14 1.9263 0
: 400 | 1479.25 1874.31 1.93088 5
: 405 | 1478.76 1873.17 1.92262 0
: 410 | 1478.28 1871.54 1.92167 5
: 415 | 1477.79 1870.11 1.92664 0
: 420 | 1477.33 1868.65 1.92087 5
: 425 | 1476.87 1867.19 1.92406 0
: 430 | 1476.42 1866.03 1.92774 5
: 435 | 1476 1864.36 1.92522 0
: 440 | 1475.55 1863.32 1.92098 5
: 445 | 1475.11 1861.99 1.92256 0
: 450 | 1470.38 1859.77 1.93114 0
: 455 | 1402.4 1816.37 1.91728 0
: 460 | 1401.27 1814.84 1.9205 5
: 465 | 1400.22 1813.8 1.92087 0
: 470 | 1399.26 1812.88 1.92731 5
: 475 | 1398.29 1811.3 1.92605 0
: 480 | 1397.39 1810.17 1.93217 5
: 485 | 1396.49 1809.53 1.92566 10
:
: Elapsed time for training with 1000 events: 8.14 sec
: Dataset[dataset] : Create results for training
: Dataset[dataset] : Evaluation of DNN_CPU on training sample
: Dataset[dataset] : Elapsed time for evaluation of 1000 events: 0.0198 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: ␛[0;36mdataset/weights/TMVARegression_DNN_CPU.weights.xml␛[0m
Factory : Training finished
:
Factory : Train method: BDTG for Regression
:
: Regression Loss Function: Huber
: Training 2000 Decision Trees ... patience please
: Elapsed time for training with 1000 events: 1.57 sec
: Dataset[dataset] : Create results for training
: Dataset[dataset] : Evaluation of BDTG on training sample
: Dataset[dataset] : Elapsed time for evaluation of 1000 events: 0.359 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
: Creating xml weight file: ␛[0;36mdataset/weights/TMVARegression_BDTG.weights.xml␛[0m
: TMVAReg.root:/dataset/Method_BDT/BDTG
Factory : Training finished
:
TH1.Print Name = TrainingHistory_DNN_CPU_testError, Entries= 0, Total sum= 211629
TH1.Print Name = TrainingHistory_DNN_CPU_trainingError, Entries= 0, Total sum= 221505
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVARegression_PDEFoam.weights.xml␛[0m
: Read foams from file: ␛[0;36mdataset/weights/TMVARegression_PDEFoam.weights_foams.root␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVARegression_KNN.weights.xml␛[0m
: Creating kd-tree with 1000 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 2 variables with 1000 values
: <Fill> Class 1 has 1000 events
: Reading weight file: ␛[0;36mdataset/weights/TMVARegression_LD.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVARegression_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVARegression_BDTG.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: PDEFoam for Regression performance
:
: Dataset[dataset] : Create results for testing
: Dataset[dataset] : Evaluation of PDEFoam on testing sample
: Dataset[dataset] : Elapsed time for evaluation of 9000 events: 0.0686 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: KNN for Regression performance
:
: Dataset[dataset] : Create results for testing
: Dataset[dataset] : Evaluation of KNN on testing sample
: Dataset[dataset] : Elapsed time for evaluation of 9000 events: 0.0744 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: LD for Regression performance
:
: Dataset[dataset] : Create results for testing
: Dataset[dataset] : Evaluation of LD on testing sample
: Dataset[dataset] : Elapsed time for evaluation of 9000 events: 0.00326 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: DNN_CPU for Regression performance
:
: Dataset[dataset] : Create results for testing
: Dataset[dataset] : Evaluation of DNN_CPU on testing sample
: Dataset[dataset] : Elapsed time for evaluation of 9000 events: 0.176 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : Test method: BDTG for Regression performance
:
: Dataset[dataset] : Create results for testing
: Dataset[dataset] : Evaluation of BDTG on testing sample
: Dataset[dataset] : Elapsed time for evaluation of 9000 events: 2.12 sec
: Create variable histograms
: Create regression target histograms
: Create regression average deviation
: Results created
Factory : ␛[1mEvaluate all methods␛[0m
: Evaluate regression method: PDEFoam
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 9000 events: 0.0437 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 1000 events: 0.00509 sec
TFHandler_PDEFoam : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 3.3352 1.1893 [ 0.00020069 5.0000 ]
: var2: 2.4860 1.4342 [ 0.00071490 5.0000 ]
: fvalue: 163.91 83.651 [ 1.6186 394.84 ]
: -----------------------------------------------------------
: Evaluate regression method: KNN
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 9000 events: 0.0776 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 1000 events: 0.00898 sec
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 3.3352 1.1893 [ 0.00020069 5.0000 ]
: var2: 2.4860 1.4342 [ 0.00071490 5.0000 ]
: fvalue: 163.91 83.651 [ 1.6186 394.84 ]
: -----------------------------------------------------------
: Evaluate regression method: LD
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 9000 events: 0.00501 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 1000 events: 0.000596 sec
TFHandler_LD : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 3.3352 1.1893 [ 0.00020069 5.0000 ]
: var2: 2.4860 1.4342 [ 0.00071490 5.0000 ]
: fvalue: 163.91 83.651 [ 1.6186 394.84 ]
: -----------------------------------------------------------
: Evaluate regression method: DNN_CPU
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 9000 events: 0.168 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 1000 events: 0.019 sec
TFHandler_DNN_CPU : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: -0.027278 1.0264 [ -3.3694 5.7307 ]
: var2: 0.0056047 0.98632 [ -5.7307 5.7307 ]
: fvalue: 163.91 83.651 [ 1.6186 394.84 ]
: -----------------------------------------------------------
TFHandler_DNN_CPU : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: -0.027278 1.0264 [ -3.3694 5.7307 ]
: var2: 0.0056047 0.98632 [ -5.7307 5.7307 ]
: fvalue: 163.91 83.651 [ 1.6186 394.84 ]
: -----------------------------------------------------------
: Evaluate regression method: BDTG
: TestRegression (testing)
: Calculate regression for all events
: Elapsed time for evaluation of 9000 events: 2.13 sec
: TestRegression (training)
: Calculate regression for all events
: Elapsed time for evaluation of 1000 events: 0.234 sec
TFHandler_BDTG : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 3.3352 1.1893 [ 0.00020069 5.0000 ]
: var2: 2.4860 1.4342 [ 0.00071490 5.0000 ]
: fvalue: 163.91 83.651 [ 1.6186 394.84 ]
: -----------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on test sample:
: ("Bias" quotes the mean deviation of the regression from true target.
: "MutInf" is the "Mutual Information" between regression and target.
: Indicated by "_T" are the corresponding "truncated" quantities ob-
: tained when removing events deviating more than 2sigma from average.)
: --------------------------------------------------------------------------------------------------
: --------------------------------------------------------------------------------------------------
: dataset BDTG : 0.0707 0.102 2.45 1.95 | 3.100 3.175
: dataset KNN : -0.237 0.578 5.17 3.44 | 2.898 2.939
: dataset PDEFoam : 0.106 -0.0677 9.22 7.74 | 2.283 2.375
: dataset LD : 0.461 2.22 19.6 17.6 | 1.985 1.979
: dataset DNN_CPU :-2.21e+08-2.22e+08 3.01e+08 2.61e+08 | 0.000 0.000
: --------------------------------------------------------------------------------------------------
:
: Evaluation results ranked by smallest RMS on training sample:
: (overtraining check)
: --------------------------------------------------------------------------------------------------
: DataSet Name: MVA Method: <Bias> <Bias_T> RMS RMS_T | MutInf MutInf_T
: --------------------------------------------------------------------------------------------------
: dataset BDTG : 0.0597 0.0107 0.566 0.293 | 3.441 3.466
: dataset KNN : -0.425 0.423 5.19 3.54 | 3.006 3.034
: dataset PDEFoam : 8.35e-07 0.106 8.04 6.57 | 2.488 2.579
: dataset LD :-1.03e-06 1.54 20.1 18.5 | 2.134 2.153
: dataset DNN_CPU :-2.12e+08-2.14e+08 3.05e+08 2.62e+08 | -0.000 -0.000
: --------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 9000 events
:
Dataset:dataset : Created tree 'TrainTree' with 1000 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m
==> Wrote root file: TMVAReg.root
==> TMVARegression is done!