#define ClassDef(name, id)
R__EXTERN TFumili * gFumili
void DeleteArrays()
Deallocates memory. Called from destructor TFumili::~TFumili.
Bool_t fNumericDerivatives
virtual Int_t GetNumberFreeParameters() const
Return the number of free parameters.
Int_t fNED2
K - Length of vector X plus 2 (for chi2)
virtual Double_t Chisquare(Int_t npar, Double_t *params) const
return a chisquare equivalent
Int_t fNpar
fNpar - number of parameters
virtual Double_t GetParError(Int_t ipar) const
Return error of parameter ipar.
virtual void PrintResults(Int_t k, Double_t p) const
Prints fit results.
virtual ~TFumili()
TFumili destructor.
virtual Int_t GetErrors(Int_t ipar, Double_t &eplus, Double_t &eminus, Double_t &eparab, Double_t &globcc) const
Return errors after MINOs not implemented.
virtual void SetFitMethod(const char *name)
ret fit method (chisquare or log-likelihood)
virtual void FitLikelihood(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag)
Minimization function for H1s using a Likelihood method.
virtual Double_t GetSumLog(Int_t)
Return Sum(log(i) i=0,n used by log-likelihood fits.
virtual Int_t ExecuteCommand(const char *command, Double_t *args, Int_t nargs)
Execute MINUIT commands.
Double_t * fEXDA
[fNED12] experimental data poInt_ter
virtual Double_t GetCovarianceMatrixElement(Int_t i, Int_t j) const
Return element i,j from the covariance matrix.
Int_t SGZ()
Evaluates objective function ( chi-square ), gradients and Z-matrix using data provided by user via T...
virtual void FitChisquare(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag)
Minimization function for H1s using a Chisquare method.
void Derivatives(Double_t *, Double_t *)
Calculates partial derivatives of theoretical function.
Double_t * fAMN
[fMaxParam] Minimum param value
TString * fANames
[fMaxParam] Parameter names
virtual void FixParameter(Int_t ipar)
Fixes parameter number ipar.
Double_t * GetPL0() const
Double_t * fPL
[fMaxParam] Limits for parameters step. If <0, then parameter is fixed
Int_t Eval(Int_t &npar, Double_t *grad, Double_t &fval, Double_t *par, Int_t flag)
Evaluate the minimisation function.
void SetParNumber(Int_t ParNum)
void SetData(Double_t *, Int_t, Int_t)
Sets pointer to data array provided by user.
virtual Int_t GetStats(Double_t &amin, Double_t &edm, Double_t &errdef, Int_t &nvpar, Int_t &nparx) const
Return global fit parameters.
Int_t fINDFLG[5]
internal flags;
Double_t EvalTFN(Double_t *, Double_t *)
Evaluate theoretical function.
Double_t * fParamError
[fMaxParam] Parameter errors
Int_t fENDFLG
End flag of fit.
Double_t * fR
[fMaxParam] Correlation factors
Double_t * fDA
[fMaxParam] Parameter step
Int_t fNstepDec
fNstepDec - maximum number of step decreasing counter
Double_t * fZ0
[fMaxParam2] Matrix of approximate second derivatives of objective function This matrix is diagonal a...
Double_t * fPL0
[fMaxParam] Step initial bounds
virtual Bool_t IsFixed(Int_t ipar) const
Return kTRUE if parameter ipar is fixed, kFALSE otherwise)
virtual void ReleaseParameter(Int_t ipar)
Releases parameter number ipar.
virtual Double_t * GetCovarianceMatrix() const
Return a pointer to the covariance matrix.
Double_t * fA
[fMaxParam] Fit parameter array
Int_t Minimize()
Main minimization procedure.
Int_t fNmaxIter
fNmaxIter - maximum number of iterations
Int_t ExecuteSetCommand(Int_t)
Called from TFumili::ExecuteCommand in case of "SET xxx" and "SHOW xxx".
Double_t fS
fS - objective function value (return)
Double_t fEPS
fEPS - required precision of parameters. If fEPS<0 then
virtual void FitChisquareI(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag)
Minimization function for H1s using a Chisquare method.
Int_t fNfcn
Number of FCN calls;.
Int_t fLastFixed
Last fixed parameter number.
void BuildArrays()
Allocates memory for internal arrays.
virtual Int_t GetNumberTotalParameters() const
Return the total number of parameters (free + fixed)
Double_t * fZ
[fMaxParam2] Invers fZ0 matrix - covariance matrix
Bool_t fLogLike
LogLikelihood flag.
Int_t fNED1
Number of experimental vectors X=(x1,x2,...xK)
Double_t * fGr
[fMaxParam] Gradients of objective function
Double_t fGT
Expected function change in next iteration.
virtual Int_t SetParameter(Int_t ipar, const char *parname, Double_t value, Double_t verr, Double_t vlow, Double_t vhigh)
Sets for parameter number ipar initial parameter value, name parname, initial error verr and limits v...
TString fCword
Command string.
virtual void FitLikelihoodI(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag)
Minimization function for H1s using a Likelihood method.
Double_t fRP
Precision of fit ( machine zero on CDC 6000) quite old yeh?
virtual Double_t GetParameter(Int_t ipar) const
Return current value of parameter ipar.
Double_t * fCmPar
[fMaxParam] parameters of commands
Double_t * fDF
[fMaxParam] First derivatives of theoretical function
virtual void Clear(Option_t *opt="")
Resets all parameter names, values and errors to zero.
virtual const char * GetParName(Int_t ipar) const
Return name of parameter ipar.
Double_t * fSumLog
[fNlog]
Double_t * fAMX
[fMaxParam] Maximum param value
Int_t fNlimMul
fNlimMul - after fNlimMul successful iterations permits four-fold increasing of fPL
Bool_t fGRAD
user calculated gradients
void InvertZ(Int_t)
Inverts packed diagonal matrix Z by square-root method.
Abstract Base Class for Fitting.
static constexpr double eplus