22#pragma optimize("",off)
67#ifdef R__COMPLETE_MEM_TERMINATION
69 class TFormulaPrimitiveCleanup {
72 TFormulaPrimitiveCleanup(
TObjArray **functions) : fListOfFunctions(functions) {}
73 ~TFormulaPrimitiveCleanup() {
74 delete *fListOfFunctions;
86 fType(0),fNArguments(0),fNParameters(0),fIsStatic(
kTRUE)
96 fType(0),fNArguments(0),fNParameters(0),fIsStatic(
kTRUE)
106 fType(10),fNArguments(1),fNParameters(0),fIsStatic(
kTRUE)
116 fType(110),fNArguments(2),fNParameters(0),fIsStatic(
kTRUE)
126 fType(1110),fNArguments(3),fNParameters(0),fIsStatic(
kTRUE)
136 fType(-1),fNArguments(2),fNParameters(npar),fIsStatic(
kTRUE)
146 fType(0),fNArguments(0),fNParameters(0),fIsStatic(
kFALSE)
156 fType(0),fNArguments(0),fNParameters(0),fIsStatic(
kFALSE)
166 fType(-10),fNArguments(1),fNParameters(0),fIsStatic(
kFALSE)
176 fType(-110),fNArguments(2),fNParameters(0),fIsStatic(
kFALSE)
185 fTFunc1110(fpointer),
186 fType(-1110),fNArguments(3),fNParameters(0),fIsStatic(
kFALSE)
247#define RTFastFun__POLY(var) \
249 Double_t res= param[var-1]+param[var]*x[0]; \
250 for (Int_t j=var-1 ;j>0;j--) res = param[j-1]+x[0]*res; \
316 for (
Int_t i = 0; i < nobjects; ++i) {
318 if (formula && 0==strcmp(
name, formula->
GetName()))
return formula;
333 for (
Int_t i = 0; i < nobjects; ++i) {
337 if (match && 0==strcmp(
name, prim->
GetName()))
return prim;
354 for(
UInt_t c = 0;
c < strlen(args); ++
c ) {
356 case '(': ++nest;
break;
357 case ')': --nest;
break;
358 case '<': ++nest;
break;
359 case '>': --nest;
break;
360 case ',': nargs += (nest==0);
break;
377 for (
Int_t j=npar ;j>=0;j--) {
378 res += temp*param[j];
389 if (
sigma == 0)
return 1.e30;
399 if (
sigma == 0)
return 0;
414#ifdef R__COMPLETE_MEM_TERMINATION
double atan2(double, double)
#define R__LOCKGUARD2(mutex)
virtual void SetOwner(Bool_t enable=kTRUE)
Set whether this collection is the owner (enable==true) of its content.
The TNamed class is the base class for all named ROOT classes.
virtual const char * GetName() const
Returns name of object.
virtual void AddLast(TObject *obj)
Add object in the next empty slot in the array.
Int_t GetEntries() const
Return the number of objects in array (i.e.
TObject * At(Int_t idx) const
Mother of all ROOT objects.
This class implements a mutex interface.
Double_t Landau(Double_t x, Double_t mean, Double_t sigma)
Double_t Pow3(Double_t x)
Double_t XorY(Double_t x, Double_t y)
Double_t XpYpZ(Double_t x, Double_t y, Double_t z)
Double_t Pow4(Double_t x)
Double_t FPol7(Double_t *x, Double_t *param)
Double_t XneY(Double_t x, Double_t y)
Double_t Pow2(Double_t x)
Double_t FPol0(Double_t *, Double_t *param)
Double_t XlY(Double_t x, Double_t y)
Double_t XxYpZ(Double_t x, Double_t y, Double_t z)
Double_t FPoln(Double_t *x, Double_t *param, Int_t npar)
FPoln.
Double_t XNot(Double_t x)
Double_t XxYxZ(Double_t x, Double_t y, Double_t z)
Double_t FPol1(Double_t *x, Double_t *param)
Double_t Nint(Double_t x)
Double_t XgeY(Double_t x, Double_t y)
Double_t XpYxZ(Double_t x, Double_t y, Double_t z)
Double_t Gausn(Double_t x, Double_t mean, Double_t sigma)
Normalize gauss.
Double_t PlusXY(Double_t x, Double_t y)
Double_t Gaus(Double_t x, Double_t mean, Double_t sigma)
Gauss.
Double_t MinusXY(Double_t x, Double_t y)
Double_t Landaun(Double_t x, Double_t mean, Double_t sigma)
Double_t FPol4(Double_t *x, Double_t *param)
Double_t XandY(Double_t x, Double_t y)
Double_t XeY(Double_t x, Double_t y)
Double_t XleY(Double_t x, Double_t y)
Double_t Sqrt(Double_t x)
Double_t FPol9(Double_t *x, Double_t *param)
Double_t FPol6(Double_t *x, Double_t *param)
Double_t FPol10(Double_t *x, Double_t *param)
Double_t DivXY(Double_t x, Double_t y)
Double_t FPol3(Double_t *x, Double_t *param)
Double_t XgY(Double_t x, Double_t y)
Double_t Pow5(Double_t x)
Double_t FPol2(Double_t *x, Double_t *param)
Double_t FPol8(Double_t *x, Double_t *param)
Double_t Sign(Double_t x)
Double_t FPol5(Double_t *x, Double_t *param)
Double_t MultXY(Double_t x, Double_t y)
void TMath_GenerInterface()
Int_t Nint(T x)
Round to nearest integer. Rounds half integers to the nearest even integer.
Short_t Max(Short_t a, Short_t b)
Double_t BreitWigner(Double_t x, Double_t mean=0, Double_t gamma=1)
Calculate a Breit Wigner function with mean and gamma.
Double_t Landau(Double_t x, Double_t mpv=0, Double_t sigma=1, Bool_t norm=kFALSE)
The LANDAU function.
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Short_t Min(Short_t a, Short_t b)
Double_t Log10(Double_t x)