Logo ROOT  
Reference Guide
RegressionKeras.py File Reference

Namespaces

namespace  RegressionKeras
 

Detailed Description

View in nbviewer Open in SWAN This tutorial shows how to do regression in TMVA with neural networks trained with keras.

from ROOT import TMVA, TFile, TTree, TCut
from subprocess import call
from os.path import isfile
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.regularizers import l2
from keras.optimizers import SGD
# Setup TMVA
output = TFile.Open('TMVA.root', 'RECREATE')
factory = TMVA.Factory('TMVARegression', output,
'!V:!Silent:Color:DrawProgressBar:Transformations=D,G:AnalysisType=Regression')
# Load data
if not isfile('tmva_reg_example.root'):
call(['curl', '-O', 'http://root.cern.ch/files/tmva_reg_example.root'])
data = TFile.Open('tmva_reg_example.root')
tree = data.Get('TreeR')
dataloader = TMVA.DataLoader('dataset')
for branch in tree.GetListOfBranches():
name = branch.GetName()
if name != 'fvalue':
dataloader.AddVariable(name)
dataloader.AddTarget('fvalue')
dataloader.AddRegressionTree(tree, 1.0)
dataloader.PrepareTrainingAndTestTree(TCut(''),
'nTrain_Regression=4000:SplitMode=Random:NormMode=NumEvents:!V')
# Generate model
# Define model
model = Sequential()
model.add(Dense(64, activation='tanh', W_regularizer=l2(1e-5), input_dim=2))
model.add(Dense(1, activation='linear'))
# Set loss and optimizer
model.compile(loss='mean_squared_error', optimizer=SGD(lr=0.01))
# Store model to file
model.save('model.h5')
model.summary()
# Book methods
factory.BookMethod(dataloader, TMVA.Types.kPyKeras, 'PyKeras',
'H:!V:VarTransform=D,G:FilenameModel=model.h5:NumEpochs=20:BatchSize=32')
factory.BookMethod(dataloader, TMVA.Types.kBDT, 'BDTG',
'!H:!V:VarTransform=D,G:NTrees=1000:BoostType=Grad:Shrinkage=0.1:UseBaggedBoost:BaggedSampleFraction=0.5:nCuts=20:MaxDepth=4')
# Run TMVA
factory.TrainAllMethods()
factory.TestAllMethods()
factory.EvaluateAllMethods()
A specialized string object used for TTree selections.
Definition: TCut.h:25
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
Definition: TFile.cxx:3923
This is the main MVA steering class.
Definition: Factory.h:81
static void PyInitialize()
Initialize Python interpreter.
static Tools & Instance()
Definition: Tools.cxx:75
Date
2017
Author
TMVA Team

Definition in file RegressionKeras.py.