134 fFitMethod ( kUseGeneticAlgorithm ),
135 fEffMethod ( kUseEventSelection ),
160 fVarHistS_smooth( 0 ),
161 fVarHistB_smooth( 0 ),
172 const TString& theWeightFile) :
174 fFitMethod ( kUseGeneticAlgorithm ),
175 fEffMethod ( kUseEventSelection ),
200 fVarHistS_smooth( 0 ),
201 fVarHistB_smooth( 0 ),
222 fVarHistS = fVarHistB = 0;
223 fVarHistS_smooth = fVarHistB_smooth = 0;
224 fVarPdfS = fVarPdfB = 0;
226 fBinaryTreeS = fBinaryTreeB = 0;
232 fRangeSign =
new std::vector<Int_t> ( GetNvar() );
233 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) (*fRangeSign)[ivar] = +1;
235 fMeanS =
new std::vector<Double_t>( GetNvar() );
236 fMeanB =
new std::vector<Double_t>( GetNvar() );
237 fRmsS =
new std::vector<Double_t>( GetNvar() );
238 fRmsB =
new std::vector<Double_t>( GetNvar() );
241 fFitParams =
new std::vector<EFitParameters>( GetNvar() );
242 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) (*fFitParams)[ivar] = kNotEnforced;
244 fFitMethod = kUseMonteCarlo;
250 for (
UInt_t i=0; i<GetNvar(); i++) {
256 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
257 for (
Int_t ibin=0; ibin<fNbins; ibin++) {
258 fCutMin[ivar][ibin] = 0;
259 fCutMax[ivar][ibin] = 0;
263 fTmpCutMin =
new Double_t[GetNvar()];
264 fTmpCutMax =
new Double_t[GetNvar()];
278 delete fEffBvsSLocal;
280 if (NULL != fCutRangeMin)
delete [] fCutRangeMin;
281 if (NULL != fCutRangeMax)
delete [] fCutRangeMax;
282 if (NULL != fAllVarsI)
delete [] fAllVarsI;
284 for (
UInt_t i=0;i<GetNvar();i++) {
285 if (NULL != fCutMin[i] )
delete [] fCutMin[i];
286 if (NULL != fCutMax[i] )
delete [] fCutMax[i];
287 if (NULL != fCutRange[i])
delete fCutRange[i];
290 if (NULL != fCutMin)
delete [] fCutMin;
291 if (NULL != fCutMax)
delete [] fCutMax;
293 if (NULL != fTmpCutMin)
delete [] fTmpCutMin;
294 if (NULL != fTmpCutMax)
delete [] fTmpCutMax;
296 if (NULL != fBinaryTreeS)
delete fBinaryTreeS;
297 if (NULL != fBinaryTreeB)
delete fBinaryTreeB;
321 DeclareOptionRef(fFitMethodS =
"GA",
"FitMethod",
"Minimisation Method (GA, SA, and MC are the primary methods to be used; the others have been introduced for testing purposes and are depreciated)");
325 AddPreDefVal(
TString(
"MCEvents"));
326 AddPreDefVal(
TString(
"MINUIT"));
327 AddPreDefVal(
TString(
"EventScan"));
330 DeclareOptionRef(fEffMethodS =
"EffSel",
"EffMethod",
"Selection Method");
331 AddPreDefVal(
TString(
"EffSel"));
332 AddPreDefVal(
TString(
"EffPDF"));
335 fCutRange.resize(GetNvar());
336 fCutRangeMin =
new Double_t[GetNvar()];
337 fCutRangeMax =
new Double_t[GetNvar()];
338 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
340 fCutRangeMin[ivar] = fCutRangeMax[ivar] = -1;
343 DeclareOptionRef( fCutRangeMin, GetNvar(),
"CutRangeMin",
"Minimum of allowed cut range (set per variable)" );
344 DeclareOptionRef( fCutRangeMax, GetNvar(),
"CutRangeMax",
"Maximum of allowed cut range (set per variable)" );
346 fAllVarsI =
new TString[GetNvar()];
348 for (
UInt_t i=0; i<GetNvar(); i++) fAllVarsI[i] =
"NotEnforced";
350 DeclareOptionRef(fAllVarsI, GetNvar(),
"VarProp",
"Categorisation of cuts");
351 AddPreDefVal(
TString(
"NotEnforced"));
354 AddPreDefVal(
TString(
"FSmart"));
365 if (IsNormalised()) {
366 Log() << kWARNING <<
"Normalisation of the input variables for cut optimisation is not" <<
Endl;
367 Log() << kWARNING <<
"supported because this provides intransparent cut values, and no" <<
Endl;
368 Log() << kWARNING <<
"improvement in the performance of the algorithm." <<
Endl;
369 Log() << kWARNING <<
"Please remove \"Normalise\" option from booking option string" <<
Endl;
370 Log() << kWARNING <<
"==> Will reset normalisation flag to \"False\"" <<
Endl;
374 if (IgnoreEventsWithNegWeightsInTraining()) {
375 Log() << kFATAL <<
"Mechanism to ignore events with negative weights in training not yet available for method: "
376 << GetMethodTypeName()
377 <<
" --> Please remove \"IgnoreNegWeightsInTraining\" option from booking string."
381 if (fFitMethodS ==
"MC" ) fFitMethod = kUseMonteCarlo;
382 else if (fFitMethodS ==
"MCEvents") fFitMethod = kUseMonteCarloEvents;
383 else if (fFitMethodS ==
"GA" ) fFitMethod = kUseGeneticAlgorithm;
384 else if (fFitMethodS ==
"SA" ) fFitMethod = kUseSimulatedAnnealing;
385 else if (fFitMethodS ==
"MINUIT" ) {
386 fFitMethod = kUseMinuit;
387 Log() << kWARNING <<
"poor performance of MINUIT in MethodCuts; preferred fit method: GA" <<
Endl;
389 else if (fFitMethodS ==
"EventScan" ) fFitMethod = kUseEventScan;
390 else Log() << kFATAL <<
"unknown minimisation method: " << fFitMethodS <<
Endl;
392 if (fEffMethodS ==
"EFFSEL" ) fEffMethod = kUseEventSelection;
393 else if (fEffMethodS ==
"EFFPDF" ) fEffMethod = kUsePDFs;
394 else fEffMethod = kUseEventSelection;
397 Log() << kINFO <<
Form(
"Use optimization method: \"%s\"",
398 (fFitMethod == kUseMonteCarlo) ?
"Monte Carlo" :
399 (fFitMethod == kUseMonteCarlo) ?
"Monte-Carlo-Event sampling" :
400 (fFitMethod == kUseEventScan) ?
"Full Event Scan (slow)" :
401 (fFitMethod == kUseMinuit) ?
"MINUIT" :
"Genetic Algorithm" ) <<
Endl;
402 Log() << kINFO <<
Form(
"Use efficiency computation method: \"%s\"",
403 (fEffMethod == kUseEventSelection) ?
"Event Selection" :
"PDF" ) <<
Endl;
406 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
407 fCutRange[ivar] =
new Interval( fCutRangeMin[ivar], fCutRangeMax[ivar] );
411 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
413 if (fAllVarsI[ivar] ==
"" || fAllVarsI[ivar] ==
"NotEnforced") theFitP = kNotEnforced;
414 else if (fAllVarsI[ivar] ==
"FMax" ) theFitP = kForceMax;
415 else if (fAllVarsI[ivar] ==
"FMin" ) theFitP = kForceMin;
416 else if (fAllVarsI[ivar] ==
"FSmart" ) theFitP = kForceSmart;
418 Log() << kFATAL <<
"unknown value \'" << fAllVarsI[ivar]
419 <<
"\' for fit parameter option " <<
Form(
"VarProp[%i]",ivar) <<
Endl;
421 (*fFitParams)[ivar] = theFitP;
423 if (theFitP != kNotEnforced)
424 Log() << kINFO <<
"Use \"" << fAllVarsI[ivar]
425 <<
"\" cuts for variable: " <<
"'" << (*fInputVars)[ivar] <<
"'" <<
Endl;
435 NoErrorCalc(err, errUpper);
438 if (fCutMin == NULL || fCutMax == NULL || fNbins == 0) {
439 Log() << kFATAL <<
"<Eval_Cuts> fCutMin/Max have zero pointer. "
440 <<
"Did you book Cuts ?" <<
Endl;
443 const Event* ev = GetEvent();
446 if (fTestSignalEff > 0) {
448 Int_t ibin = fEffBvsSLocal->FindBin( fTestSignalEff );
449 if (ibin < 0 ) ibin = 0;
450 else if (ibin >= fNbins) ibin = fNbins - 1;
453 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++)
454 passed &= ( (ev->
GetValue(ivar) > fCutMin[ivar][ibin]) &&
455 (ev->
GetValue(ivar) <= fCutMax[ivar][ibin]) );
457 return passed ? 1. : 0. ;
467 std::vector<Double_t> cutsMin;
468 std::vector<Double_t> cutsMax;
469 Int_t ibin = fEffBvsSLocal->FindBin( effS );
471 Double_t trueEffS = GetCuts( effS, cutsMin, cutsMax );
474 std::vector<TString>* varVec = 0;
475 if (GetTransformationHandler().GetNumOfTransformations() == 0) {
477 varVec =
new std::vector<TString>;
478 for (
UInt_t ivar=0; ivar<cutsMin.size(); ivar++) {
479 varVec->push_back( DataInfo().GetVariableInfo(ivar).GetLabel() );
482 else if (GetTransformationHandler().GetNumOfTransformations() == 1) {
484 varVec = GetTransformationHandler().GetTransformationStringsOfLastTransform();
488 varVec =
new std::vector<TString>;
489 for (
UInt_t ivar=0; ivar<cutsMin.size(); ivar++) {
490 varVec->push_back( DataInfo().GetVariableInfo(ivar).GetLabel() +
" [transformed]" );
495 for (
UInt_t ivar=0; ivar<cutsMin.size(); ivar++) {
496 if ((
UInt_t)(*varVec)[ivar].Length() > maxL) maxL = (*varVec)[ivar].Length();
498 UInt_t maxLine = 20+maxL+16;
500 for (
UInt_t i=0; i<maxLine; i++)
Log() <<
"-";
502 Log() << kHEADER <<
"Cut values for requested signal efficiency: " << trueEffS <<
Endl;
503 Log() << kINFO <<
"Corresponding background efficiency : " << fEffBvsSLocal->GetBinContent( ibin ) <<
Endl;
504 if (GetTransformationHandler().GetNumOfTransformations() == 1) {
505 Log() << kINFO <<
"Transformation applied to input variables : \""
506 << GetTransformationHandler().GetNameOfLastTransform() <<
"\"" <<
Endl;
508 else if (GetTransformationHandler().GetNumOfTransformations() > 1) {
509 Log() << kINFO <<
"[ More than one (=" << GetTransformationHandler().GetNumOfTransformations() <<
") "
510 <<
" transformations applied in transformation chain; cuts applied on transformed quantities ] " <<
Endl;
513 Log() << kINFO <<
"Transformation applied to input variables : None" <<
Endl;
515 for (
UInt_t i=0; i<maxLine; i++)
Log() <<
"-";
517 for (
UInt_t ivar=0; ivar<cutsMin.size(); ivar++) {
519 <<
"Cut[" << std::setw(2) << ivar <<
"]: "
520 << std::setw(10) << cutsMin[ivar]
522 << std::setw(maxL) << (*varVec)[ivar]
524 << std::setw(10) << cutsMax[ivar] <<
Endl;
526 for (
UInt_t i=0; i<maxLine; i++)
Log() <<
"-";
538 std::vector<Double_t> cMin( GetNvar() );
539 std::vector<Double_t> cMax( GetNvar() );
540 Double_t trueEffS = GetCuts( effS, cMin, cMax );
541 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
542 cutMin[ivar] = cMin[ivar];
543 cutMax[ivar] = cMax[ivar];
552 std::vector<Double_t>& cutMin,
553 std::vector<Double_t>& cutMax )
const
556 Int_t ibin = fEffBvsSLocal->FindBin( effS );
559 Double_t trueEffS = fEffBvsSLocal->GetBinLowEdge( ibin );
562 if (ibin < 0 ) ibin = 0;
563 else if (ibin >= fNbins) ibin = fNbins - 1;
567 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
568 cutMin.push_back( fCutMin[ivar][ibin] );
569 cutMax.push_back( fCutMax[ivar][ibin] );
580 if (fEffMethod == kUsePDFs) CreateVariablePDFs();
583 if (fBinaryTreeS != 0) {
delete fBinaryTreeS; fBinaryTreeS = 0; }
584 if (fBinaryTreeB != 0) {
delete fBinaryTreeB; fBinaryTreeB = 0; }
593 fBinaryTreeB->Fill( GetEventCollection(
Types::kTraining), fBackgroundClass );
595 for (
UInt_t ivar =0; ivar < Data()->GetNVariables(); ivar++) {
612 if (
TMath::Abs(fCutRange[ivar]->GetMin() - fCutRange[ivar]->GetMax()) < 1.0e-300 ) {
613 fCutRange[ivar]->SetMin(
xmin );
614 fCutRange[ivar]->SetMax(
xmax );
616 else if (
xmin > fCutRange[ivar]->GetMin()) fCutRange[ivar]->SetMin(
xmin );
617 else if (
xmax < fCutRange[ivar]->GetMax()) fCutRange[ivar]->SetMax(
xmax );
620 std::vector<TH1F*> signalDist, bkgDist;
623 delete fEffBvsSLocal;
624 fEffBvsSLocal =
new TH1F( GetTestvarName() +
"_effBvsSLocal",
626 fEffBvsSLocal->SetDirectory(0);
629 for (
Int_t ibin=1; ibin<=fNbins; ibin++) fEffBvsSLocal->SetBinContent( ibin, -0.1 );
632 if (fFitMethod == kUseGeneticAlgorithm ||
633 fFitMethod == kUseMonteCarlo ||
634 fFitMethod == kUseMinuit ||
635 fFitMethod == kUseSimulatedAnnealing) {
638 std::vector<Interval*> ranges;
640 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
643 if (DataInfo().GetVariableInfo(ivar).GetVarType() ==
'I') {
644 nbins =
Int_t(fCutRange[ivar]->GetMax() - fCutRange[ivar]->GetMin()) + 1;
647 if ((*fFitParams)[ivar] == kForceSmart) {
648 if ((*fMeanS)[ivar] > (*fMeanB)[ivar]) (*fFitParams)[ivar] = kForceMax;
649 else (*fFitParams)[ivar] = kForceMin;
652 if ((*fFitParams)[ivar] == kForceMin) {
653 ranges.push_back(
new Interval( fCutRange[ivar]->GetMin(), fCutRange[ivar]->GetMin(), nbins ) );
654 ranges.push_back(
new Interval( 0, fCutRange[ivar]->GetMax() - fCutRange[ivar]->GetMin(), nbins ) );
656 else if ((*fFitParams)[ivar] == kForceMax) {
657 ranges.push_back(
new Interval( fCutRange[ivar]->GetMin(), fCutRange[ivar]->GetMax(), nbins ) );
658 ranges.push_back(
new Interval( fCutRange[ivar]->GetMax() - fCutRange[ivar]->GetMin(),
659 fCutRange[ivar]->GetMax() - fCutRange[ivar]->GetMin(), nbins ) );
662 ranges.push_back(
new Interval( fCutRange[ivar]->GetMin(), fCutRange[ivar]->GetMax(), nbins ) );
663 ranges.push_back(
new Interval( 0, fCutRange[ivar]->GetMax() - fCutRange[ivar]->GetMin(), nbins ) );
670 switch (fFitMethod) {
671 case kUseGeneticAlgorithm:
680 case kUseSimulatedAnnealing:
684 Log() << kFATAL <<
"Wrong fit method: " << fFitMethod <<
Endl;
695 for (
UInt_t ivar=0; ivar<ranges.size(); ivar++)
delete ranges[ivar];
700 else if (fFitMethod == kUseEventScan) {
702 Int_t nevents = Data()->GetNEvents();
706 Int_t nsamples =
Int_t(0.5*nevents*(nevents - 1));
708 fIPyMaxIter = nsamples;
710 Log() << kINFO <<
"Running full event scan: " <<
Endl;
711 for (
Int_t ievt1=0; ievt1<nevents; ievt1++) {
712 for (
Int_t ievt2=ievt1+1; ievt2<nevents; ievt2++) {
714 fIPyCurrentIter = ic;
715 if (fExitFromTraining)
break;
716 EstimatorFunction( ievt1, ievt2 );
725 else if (fFitMethod == kUseMonteCarloEvents) {
727 Int_t nsamples = 200000;
729 DeclareOptionRef( nsamples,
"SampleSize",
"Number of Monte-Carlo-Event samples" );
730 DeclareOptionRef( seed,
"Seed",
"Seed for the random generator (0 takes random seeds)" );
733 Int_t nevents = Data()->GetNEvents();
738 fIPyMaxIter = nsamples;
743 Log() << kINFO <<
"Running Monte-Carlo-Event sampling over " << nsamples <<
" events" <<
Endl;
744 std::vector<Double_t> pars( 2*GetNvar() );
746 for (
Int_t itoy=0; itoy<nsamples; itoy++) {
747 fIPyCurrentIter = ic;
748 if (fExitFromTraining)
break;
750 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
763 const Event *ev1 = GetEvent(ievt1);
764 isSignal = DataInfo().IsSignal(ev1);
767 const Event *ev2 = GetEvent(ievt2);
768 isSignal &= DataInfo().IsSignal(ev2);
771 if (nbreak++ > 10000) {
772 Log() << kFATAL <<
"<MCEvents>: could not find signal events"
773 <<
" after 10000 trials - do you have signal events in your sample ?"
780 if (evt1 > evt2) {
Double_t z = evt1; evt1 = evt2; evt2 = z; }
782 pars[2*ivar+1] = evt2 - evt1;
786 EstimatorFunction( pars );
796 else Log() << kFATAL <<
"Unknown minimisation method: " << fFitMethod <<
Endl;
798 if (fBinaryTreeS != 0) {
delete fBinaryTreeS; fBinaryTreeS = 0; }
799 if (fBinaryTreeB != 0) {
delete fBinaryTreeB; fBinaryTreeB = 0; }
802 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
803 for (
Int_t ibin=0; ibin<fNbins; ibin++) {
805 if ((*fFitParams)[ivar] == kForceMin && fCutMin[ivar][ibin] > -fgMaxAbsCutVal) {
806 fCutMin[ivar][ibin] = -fgMaxAbsCutVal;
808 if ((*fFitParams)[ivar] == kForceMax && fCutMax[ivar][ibin] < fgMaxAbsCutVal) {
809 fCutMax[ivar][ibin] = fgMaxAbsCutVal;
820 if (!fExitFromTraining) fIPyMaxIter = fIPyCurrentIter;
836 const Event *ev1 = GetEvent(ievt1);
837 if (!DataInfo().IsSignal(ev1))
return -1;
839 const Event *ev2 = GetEvent(ievt2);
840 if (!DataInfo().IsSignal(ev2))
return -1;
842 const Int_t nvar = GetNvar();
846 for (
Int_t ivar=0; ivar<nvar; ivar++) {
852 std::vector<Double_t> pars;
853 for (
Int_t ivar=0; ivar<nvar; ivar++) {
856 if (evt1[ivar] < evt2[ivar]) {
865 pars.push_back( cutMin );
866 pars.push_back( cutMax - cutMin );
872 return ComputeEstimator( pars );
880 return ComputeEstimator( pars );
900 this->MatchParsToCuts( pars, &fTmpCutMin[0], &fTmpCutMax[0] );
903 switch (fEffMethod) {
905 this->GetEffsfromPDFs (&fTmpCutMin[0], &fTmpCutMax[0], effS, effB);
907 case kUseEventSelection:
908 this->GetEffsfromSelection (&fTmpCutMin[0], &fTmpCutMax[0], effS, effB);
911 this->GetEffsfromSelection (&fTmpCutMin[0], &fTmpCutMax[0], effS, effB);
922 Int_t ibinS = fEffBvsSLocal->FindBin( effS );
924 Double_t effBH = fEffBvsSLocal->GetBinContent( ibinS );
925 Double_t effBH_left = (ibinS > 1 ) ? fEffBvsSLocal->GetBinContent( ibinS-1 ) : effBH;
926 Double_t effBH_right = (ibinS < fNbins) ? fEffBvsSLocal->GetBinContent( ibinS+1 ) : effBH;
928 Double_t average = 0.5*(effBH_left + effBH_right);
929 if (effBH < effB) average = effBH;
933 eta = ( -
TMath::Abs(effBH-average) + (1.0 - (effBH - effB))) / (1.0 + effS);
940 if (effBH < 0 || effBH > effB) {
941 fEffBvsSLocal->SetBinContent( ibinS, effB );
942 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
943 fCutMin[ivar][ibinS-1] = fTmpCutMin[ivar];
944 fCutMax[ivar][ibinS-1] = fTmpCutMax[ivar];
958 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
959 diff=(fCutRange[ivar]->GetMax()-fTmpCutMax[ivar])/(fCutRange[ivar]->GetMax()-fCutRange[ivar]->GetMin());
961 diff=(fCutRange[ivar]->GetMin()-fTmpCutMin[ivar])/(fCutRange[ivar]->GetMax()-fCutRange[ivar]->GetMin());
962 penalty+=4.*diff*diff;
965 if (effS<1.e-4)
return 10.0+penalty;
966 else return 10.*(1.-10.*effS);
977 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
979 cutMin[ivar] = ((*fRangeSign)[ivar] > 0) ? pars[ipar] : pars[ipar] - pars[ipar+1];
980 cutMax[ivar] = ((*fRangeSign)[ivar] > 0) ? pars[ipar] + pars[ipar+1] : pars[ipar];
990 if (ibin < 1 || ibin > fNbins)
Log() << kFATAL <<
"::MatchCutsToPars: bin error: "
993 const UInt_t nvar = GetNvar();
996 for (
UInt_t ivar=0; ivar<nvar; ivar++) {
997 cutMin[ivar] = cutMinAll[ivar][ibin-1];
998 cutMax[ivar] = cutMaxAll[ivar][ibin-1];
1001 MatchCutsToPars( pars, cutMin, cutMax );
1012 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
1013 Int_t ipar = 2*ivar;
1014 pars[ipar] = ((*fRangeSign)[ivar] > 0) ? cutMin[ivar] : cutMax[ivar];
1015 pars[ipar+1] = cutMax[ivar] - cutMin[ivar];
1028 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
1029 effS *= (*fVarPdfS)[ivar]->GetIntegral( cutMin[ivar], cutMax[ivar] );
1030 effB *= (*fVarPdfB)[ivar]->GetIntegral( cutMin[ivar], cutMax[ivar] );
1036 if( !fNegEffWarning )
Log() << kWARNING <<
"Negative signal efficiency found and set to 0. This is probably due to many events with negative weights in a certain cut-region." <<
Endl;
1037 fNegEffWarning =
kTRUE;
1041 if( !fNegEffWarning )
Log() << kWARNING <<
"Negative background efficiency found and set to 0. This is probably due to many events with negative weights in a certain cut-region." <<
Endl;
1042 fNegEffWarning =
kTRUE;
1056 Volume* volume =
new Volume( cutMin, cutMax, GetNvar() );
1059 nSelS = fBinaryTreeS->SearchVolume( volume );
1060 nSelB = fBinaryTreeB->SearchVolume( volume );
1065 nTotS = fBinaryTreeS->GetSumOfWeights();
1066 nTotB = fBinaryTreeB->GetSumOfWeights();
1069 if (nTotS == 0 && nTotB == 0) {
1070 Log() << kFATAL <<
"<GetEffsfromSelection> fatal error in zero total number of events:"
1071 <<
" nTotS, nTotB: " << nTotS <<
" " << nTotB <<
" ***" <<
Endl;
1078 Log() << kWARNING <<
"<ComputeEstimator> zero number of signal events" <<
Endl;
1080 else if (nTotB == 0) {
1083 Log() << kWARNING <<
"<ComputeEstimator> zero number of background events" <<
Endl;
1093 if( !fNegEffWarning )
Log() << kWARNING <<
"Negative signal efficiency found and set to 0. This is probably due to many events with negative weights in a certain cut-region." <<
Endl;
1094 fNegEffWarning =
kTRUE;
1098 if( !fNegEffWarning )
Log() << kWARNING <<
"Negative background efficiency found and set to 0. This is probably due to many events with negative weights in a certain cut-region." <<
Endl;
1099 fNegEffWarning =
kTRUE;
1109 fVarHistS =
new std::vector<TH1*>( GetNvar() );
1110 fVarHistB =
new std::vector<TH1*>( GetNvar() );
1111 fVarHistS_smooth =
new std::vector<TH1*>( GetNvar() );
1112 fVarHistB_smooth =
new std::vector<TH1*>( GetNvar() );
1113 fVarPdfS =
new std::vector<PDF*>( GetNvar() );
1114 fVarPdfB =
new std::vector<PDF*>( GetNvar() );
1121 for(
UInt_t ievt=0; ievt<Data()->GetNEvents(); ievt++ ){
1122 const Event *ev = GetEvent(ievt);
1124 if( val > minVal ) minVal = val;
1125 if( val < maxVal ) maxVal = val;
1128 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
1131 TString histTitle = (*fInputVars)[ivar] +
" signal training";
1132 TString histName = (*fInputVars)[ivar] +
"_sig";
1143 (*fVarHistS)[ivar] =
new TH1F(histName.
Data(), histTitle.
Data(), fNbins, minVal, maxVal );
1146 histTitle = (*fInputVars)[ivar] +
" background training";
1147 histName = (*fInputVars)[ivar] +
"_bgd";
1158 (*fVarHistB)[ivar] =
new TH1F(histName.
Data(), histTitle.
Data(), fNbins, minVal, maxVal );
1160 for(
UInt_t ievt=0; ievt<Data()->GetNEvents(); ievt++ ){
1161 const Event *ev = GetEvent(ievt);
1163 if( DataInfo().IsSignal(ev) ){
1164 (*fVarHistS)[ivar]->Fill( val );
1166 (*fVarHistB)[ivar]->Fill( val );
1173 (*fVarHistS_smooth)[ivar] = (
TH1F*)(*fVarHistS)[ivar]->Clone();
1174 histTitle = (*fInputVars)[ivar] +
" signal training smoothed ";
1175 histTitle += nsmooth;
1176 histTitle +=
" times";
1177 histName = (*fInputVars)[ivar] +
"_sig_smooth";
1178 (*fVarHistS_smooth)[ivar]->SetName(histName);
1179 (*fVarHistS_smooth)[ivar]->SetTitle(histTitle);
1182 (*fVarHistS_smooth)[ivar]->Smooth(nsmooth);
1197 (*fVarHistB_smooth)[ivar] = (
TH1F*)(*fVarHistB)[ivar]->
Clone();
1198 histTitle = (*fInputVars)[ivar]+
" background training smoothed ";
1199 histTitle += nsmooth;
1200 histTitle +=
" times";
1201 histName = (*fInputVars)[ivar]+
"_bgd_smooth";
1202 (*fVarHistB_smooth)[ivar]->SetName(histName);
1203 (*fVarHistB_smooth)[ivar]->SetTitle(histTitle);
1206 (*fVarHistB_smooth)[ivar]->Smooth(nsmooth);
1225 istr >>
dummy >> fNbins;
1231 if (dummyInt != Data()->GetNVariables()) {
1232 Log() << kFATAL <<
"<ReadWeightsFromStream> fatal error: mismatch "
1233 <<
"in number of variables: " << dummyInt <<
" != " << Data()->GetNVariables() <<
Endl;
1238 if (fFitMethod == kUseMonteCarlo) {
1239 Log() << kWARNING <<
"Read cuts optimised using sample of MC events" <<
Endl;
1241 else if (fFitMethod == kUseMonteCarloEvents) {
1242 Log() << kWARNING <<
"Read cuts optimised using sample of MC events" <<
Endl;
1244 else if (fFitMethod == kUseGeneticAlgorithm) {
1245 Log() << kINFO <<
"Read cuts optimised using Genetic Algorithm" <<
Endl;
1247 else if (fFitMethod == kUseSimulatedAnnealing) {
1248 Log() << kINFO <<
"Read cuts optimised using Simulated Annealing algorithm" <<
Endl;
1250 else if (fFitMethod == kUseEventScan) {
1251 Log() << kINFO <<
"Read cuts optimised using Full Event Scan" <<
Endl;
1254 Log() << kWARNING <<
"unknown method: " << fFitMethod <<
Endl;
1256 Log() << kINFO <<
"in " << fNbins <<
" signal efficiency bins and for " << GetNvar() <<
" variables" <<
Endl;
1260 istr.getline(buffer,200);
1261 istr.getline(buffer,200);
1265 if (fEffBvsSLocal != 0)
delete fEffBvsSLocal;
1266 fEffBvsSLocal =
new TH1F( GetTestvarName() +
"_effBvsSLocal",
1267 TString(
GetName()) +
" efficiency of B vs S", fNbins, 0.0, 1.0 );
1268 fEffBvsSLocal->SetDirectory(0);
1270 for (
Int_t ibin=0; ibin<fNbins; ibin++) {
1271 istr >> tmpbin >> tmpeffS >> tmpeffB;
1272 fEffBvsSLocal->SetBinContent( ibin+1, tmpeffB );
1274 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
1275 istr >> fCutMin[ivar][ibin] >> fCutMax[ivar][ibin];
1279 fEffSMin = fEffBvsSLocal->GetBinCenter(1);
1280 fEffSMax = fEffBvsSLocal->GetBinCenter(fNbins);
1290 std::vector<Double_t> cutsMin;
1291 std::vector<Double_t> cutsMax;
1297 gTools().
AddComment( wght,
Form(
"Below are the optimised cuts for %i variables: Format: ibin(hist) effS effB cutMin[ivar=0] cutMax[ivar=0] ... cutMin[ivar=n-1] cutMax[ivar=n-1]", GetNvar() ) );
1307 for (
Int_t ibin=0; ibin<fNbins; ibin++) {
1308 Double_t effS = fEffBvsSLocal->GetBinCenter ( ibin + 1 );
1309 Double_t trueEffS = GetCuts( effS, cutsMin, cutsMax );
1315 gTools().
AddAttr( binxml,
"effB", fEffBvsSLocal->GetBinContent( ibin + 1 ) );
1317 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
1330 for (
UInt_t i=0; i<GetNvar(); i++) {
1331 if (fCutMin[i] != 0)
delete [] fCutMin[i];
1332 if (fCutMax[i] != 0)
delete [] fCutMax[i];
1334 if (fCutMin != 0)
delete [] fCutMin;
1335 if (fCutMax != 0)
delete [] fCutMax;
1337 Int_t tmpEffMethod, tmpFitMethod;
1338 gTools().
ReadAttr( wghtnode,
"OptimisationMethod", tmpEffMethod );
1346 if (fFitMethod == kUseMonteCarlo) {
1347 Log() << kINFO <<
"Read cuts optimised using sample of MC events" <<
Endl;
1349 else if (fFitMethod == kUseMonteCarloEvents) {
1350 Log() << kINFO <<
"Read cuts optimised using sample of MC-Event events" <<
Endl;
1352 else if (fFitMethod == kUseGeneticAlgorithm) {
1353 Log() << kINFO <<
"Read cuts optimised using Genetic Algorithm" <<
Endl;
1355 else if (fFitMethod == kUseSimulatedAnnealing) {
1356 Log() << kINFO <<
"Read cuts optimised using Simulated Annealing algorithm" <<
Endl;
1358 else if (fFitMethod == kUseEventScan) {
1359 Log() << kINFO <<
"Read cuts optimised using Full Event Scan" <<
Endl;
1362 Log() << kWARNING <<
"unknown method: " << fFitMethod <<
Endl;
1364 Log() << kINFO <<
"Reading " << fNbins <<
" signal efficiency bins for " << GetNvar() <<
" variables" <<
Endl;
1366 delete fEffBvsSLocal;
1367 fEffBvsSLocal =
new TH1F( GetTestvarName() +
"_effBvsSLocal",
1368 TString(
GetName()) +
" efficiency of B vs S", fNbins, 0.0, 1.0 );
1369 fEffBvsSLocal->SetDirectory(0);
1370 for (
Int_t ibin=1; ibin<=fNbins; ibin++) fEffBvsSLocal->SetBinContent( ibin, -0.1 );
1372 fCutMin =
new Double_t*[GetNvar()];
1373 fCutMax =
new Double_t*[GetNvar()];
1374 for (
UInt_t i=0;i<GetNvar();i++) {
1394 if (tmpbin-1 >= fNbins || tmpbin-1 < 0) {
1395 Log() << kFATAL <<
"Mismatch in bins: " << tmpbin-1 <<
" >= " << fNbins <<
Endl;
1398 fEffBvsSLocal->SetBinContent( tmpbin, tmpeffB );
1400 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
1413 Log() << kINFO <<
"Write monitoring histograms to file: " << BaseDir()->GetPath() <<
Endl;
1415 fEffBvsSLocal->
Write();
1418 if (fEffMethod == kUsePDFs) {
1419 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
1420 (*fVarHistS)[ivar]->Write();
1421 (*fVarHistB)[ivar]->Write();
1422 (*fVarHistS_smooth)[ivar]->Write();
1423 (*fVarHistB_smooth)[ivar]->Write();
1424 (*fVarPdfS)[ivar]->GetPDFHist()->Write();
1425 (*fVarPdfB)[ivar]->GetPDFHist()->Write();
1448 Log() << kFATAL <<
"<GetTrainingEfficiency> wrong number of arguments"
1449 <<
" in string: " << theString
1450 <<
" | required format, e.g., Efficiency:0.05" <<
Endl;
1463 if (results->
GetHist(
"EFF_BVSS_TR")==0) {
1465 if (fBinaryTreeS != 0) {
delete fBinaryTreeS; fBinaryTreeS = 0; }
1466 if (fBinaryTreeB != 0) {
delete fBinaryTreeB; fBinaryTreeB = 0; }
1471 fBinaryTreeB->Fill( GetEventCollection(
Types::kTraining), fBackgroundClass );
1479 TH1* eff_bvss_tr =
new TH1F( GetTestvarName() +
"_trainingEffBvsS", GetTestvarName() +
"", fNbins, 0, 1 );
1481 TH1* rej_bvss_tr =
new TH1F( GetTestvarName() +
"_trainingRejBvsS", GetTestvarName() +
"", fNbins, 0, 1 );
1483 results->
Store(eff_bvss_tr,
"EFF_BVSS_TR");
1484 results->
Store(rej_bvss_tr,
"REJ_BVSS_TR");
1491 Int_t nFailedBins=0;
1492 for (
Int_t bini=1; bini<=fNbins; bini++) {
1493 for (
UInt_t ivar=0; ivar <GetNvar(); ivar++){
1494 tmpCutMin[ivar] = fCutMin[ivar][bini-1];
1495 tmpCutMax[ivar] = fCutMax[ivar][bini-1];
1499 this->GetEffsfromSelection( &tmpCutMin[0], &tmpCutMax[0], effS, effB);
1502 if (effBin != bini){
1503 Log()<< kVERBOSE <<
"unable to fill efficiency bin " << bini<<
" " << effBin <<
Endl;
1512 if (nFailedBins>0)
Log()<< kWARNING <<
" unable to fill "<< nFailedBins <<
" efficiency bins " <<
Endl;
1514 delete [] tmpCutMin;
1515 delete [] tmpCutMax;
1518 fSplTrainEffBvsS =
new TSpline1(
"trainEffBvsS",
new TGraph( eff_bvss_tr ) );
1522 if (NULL == fSplTrainEffBvsS)
return 0.0;
1525 Double_t effS = 0., effB, effS_ = 0., effB_ = 0.;
1526 Int_t nbins_ = 1000;
1529 for (
Int_t bini=1; bini<=nbins_; bini++) {
1531 effS = (bini - 0.5)/
Float_t(nbins_);
1532 effB = fSplTrainEffBvsS->Eval( effS );
1535 if ((effB - effBref)*(effB_ - effBref) < 0)
break;
1540 return 0.5*(effS + effS_);
1557 Data()->SetCurrentType(
type);
1566 Log() << kFATAL <<
"<GetEfficiency> wrong number of arguments"
1567 <<
" in string: " << theString
1568 <<
" | required format, e.g., Efficiency:0.05, or empty string" <<
Endl;
1583 if (results->
GetHist(
"MVA_EFF_BvsS")==0) {
1585 if (fBinaryTreeS!=0) {
delete fBinaryTreeS; fBinaryTreeS = 0; }
1586 if (fBinaryTreeB!=0) {
delete fBinaryTreeB; fBinaryTreeB = 0; }
1592 fBinaryTreeS->Fill( GetEventCollection(
Types::kTesting), fSignalClass );
1594 fBinaryTreeB->Fill( GetEventCollection(
Types::kTesting), fBackgroundClass );
1603 TH1* eff_BvsS =
new TH1F( GetTestvarName() +
"_effBvsS", GetTestvarName() +
"", fNbins, 0, 1 );
1605 TH1* rej_BvsS =
new TH1F( GetTestvarName() +
"_rejBvsS", GetTestvarName() +
"", fNbins, 0, 1 );
1607 results->
Store(eff_BvsS,
"MVA_EFF_BvsS");
1608 results->
Store(rej_BvsS);
1613 TH1* eff_s =
new TH1F( GetTestvarName() +
"_effS", GetTestvarName() +
" (signal)", fNbins,
xmin,
xmax);
1615 TH1* eff_b =
new TH1F( GetTestvarName() +
"_effB", GetTestvarName() +
" (background)", fNbins,
xmin,
xmax);
1617 results->
Store(eff_s,
"MVA_S");
1618 results->
Store(eff_b,
"MVA_B");
1628 for (
Int_t bini=1; bini<=fNbins; bini++) {
1629 for (
UInt_t ivar=0; ivar <GetNvar(); ivar++) {
1630 tmpCutMin[ivar] = fCutMin[ivar][bini-1];
1631 tmpCutMax[ivar] = fCutMax[ivar][bini-1];
1635 this->GetEffsfromSelection( &tmpCutMin[0], &tmpCutMax[0], effS, effB);
1636 tmpBvsS->
SetPoint(bini, effS, effB);
1641 tmpBvsS->
SetPoint(fNbins+1, 1., 1.);
1643 delete [] tmpCutMin;
1644 delete [] tmpCutMax;
1647 fSpleffBvsS =
new TSpline1(
"effBvsS", tmpBvsS );
1648 for (
Int_t bini=1; bini<=fNbins; bini++) {
1650 Double_t effB = fSpleffBvsS->Eval( effS );
1657 if (NULL == fSpleffBvsS)
return 0.0;
1660 Double_t effS = 0, effB = 0, effS_ = 0, effB_ = 0;
1661 Int_t nbins_ = 1000;
1667 for (
Int_t bini=1; bini<=nbins_; bini++) {
1670 effS = (bini - 0.5)/
Float_t(nbins_);
1671 effB = fSpleffBvsS->Eval( effS );
1672 integral += (1.0 - effB);
1681 for (
Int_t bini=1; bini<=nbins_; bini++) {
1683 effS = (bini - 0.5)/
Float_t(nbins_);
1684 effB = fSpleffBvsS->Eval( effS );
1687 if ((effB - effBref)*(effB_ - effBref) < 0)
break;
1692 effS = 0.5*(effS + effS_);
1694 if (Data()->GetNEvtSigTest() > 0)
1709 fout <<
" // not implemented for class: \"" << className <<
"\"" << std::endl;
1710 fout <<
"};" << std::endl;
1728 Log() <<
"The optimisation of rectangular cuts performed by TMVA maximises " <<
Endl;
1729 Log() <<
"the background rejection at given signal efficiency, and scans " <<
Endl;
1730 Log() <<
"over the full range of the latter quantity. Three optimisation" <<
Endl;
1731 Log() <<
"methods are optional: Monte Carlo sampling (MC), a Genetics" <<
Endl;
1732 Log() <<
"Algorithm (GA), and Simulated Annealing (SA). GA and SA are" <<
Endl;
1733 Log() <<
"expected to perform best." <<
Endl;
1735 Log() <<
"The difficulty to find the optimal cuts strongly increases with" <<
Endl;
1736 Log() <<
"the dimensionality (number of input variables) of the problem." <<
Endl;
1737 Log() <<
"This behavior is due to the non-uniqueness of the solution space."<<
Endl;
1741 Log() <<
"If the dimensionality exceeds, say, 4 input variables, it is " <<
Endl;
1742 Log() <<
"advisable to scrutinize the separation power of the variables," <<
Endl;
1743 Log() <<
"and to remove the weakest ones. If some among the input variables" <<
Endl;
1744 Log() <<
"can be described by a single cut (e.g., because signal tends to be" <<
Endl;
1745 Log() <<
"larger than background), this can be indicated to MethodCuts via" <<
Endl;
1746 Log() <<
"the \"Fsmart\" options (see option string). Choosing this option" <<
Endl;
1747 Log() <<
"reduces the number of requirements for the variable from 2 (min/max)" <<
Endl;
1748 Log() <<
"to a single one (TMVA finds out whether it is to be interpreted as" <<
Endl;
1749 Log() <<
"min or max)." <<
Endl;
1753 Log() << bold <<
"Monte Carlo sampling:" << resbold <<
Endl;
1755 Log() <<
"Apart form the \"Fsmart\" option for the variables, the only way" <<
Endl;
1756 Log() <<
"to improve the MC sampling is to increase the sampling rate. This" <<
Endl;
1757 Log() <<
"is done via the configuration option \"MC_NRandCuts\". The execution" <<
Endl;
1758 Log() <<
"time scales linearly with the sampling rate." <<
Endl;
1760 Log() << bold <<
"Genetic Algorithm:" << resbold <<
Endl;
1762 Log() <<
"The algorithm terminates if no significant fitness increase has" <<
Endl;
1763 Log() <<
"been achieved within the last \"nsteps\" steps of the calculation." <<
Endl;
1764 Log() <<
"Wiggles in the ROC curve or constant background rejection of 1" <<
Endl;
1765 Log() <<
"indicate that the GA failed to always converge at the true maximum" <<
Endl;
1766 Log() <<
"fitness. In such a case, it is recommended to broaden the search " <<
Endl;
1767 Log() <<
"by increasing the population size (\"popSize\") and to give the GA " <<
Endl;
1768 Log() <<
"more time to find improvements by increasing the number of steps" <<
Endl;
1769 Log() <<
"(\"nsteps\")" <<
Endl;
1770 Log() <<
" -> increase \"popSize\" (at least >10 * number of variables)" <<
Endl;
1771 Log() <<
" -> increase \"nsteps\"" <<
Endl;
1773 Log() << bold <<
"Simulated Annealing (SA) algorithm:" << resbold <<
Endl;
1775 Log() <<
"\"Increasing Adaptive\" approach:" <<
Endl;
1777 Log() <<
"The algorithm seeks local minima and explores their neighborhoods, while" <<
Endl;
1778 Log() <<
"changing the ambient temperature depending on the number of failures" <<
Endl;
1779 Log() <<
"in the previous steps. The performance can be improved by increasing" <<
Endl;
1780 Log() <<
"the number of iteration steps (\"MaxCalls\"), or by adjusting the" <<
Endl;
1781 Log() <<
"minimal temperature (\"MinTemperature\"). Manual adjustments of the" <<
Endl;
1782 Log() <<
"speed of the temperature increase (\"TemperatureScale\" and \"AdaptiveSpeed\")" <<
Endl;
1783 Log() <<
"to individual data sets should also help. Summary:" << brk <<
Endl;
1784 Log() <<
" -> increase \"MaxCalls\"" << brk <<
Endl;
1785 Log() <<
" -> adjust \"MinTemperature\"" << brk <<
Endl;
1786 Log() <<
" -> adjust \"TemperatureScale\"" << brk <<
Endl;
1787 Log() <<
" -> adjust \"AdaptiveSpeed\"" <<
Endl;
1789 Log() <<
"\"Decreasing Adaptive\" approach:" <<
Endl;
1791 Log() <<
"The algorithm calculates the initial temperature (based on the effect-" <<
Endl;
1792 Log() <<
"iveness of large steps) and the multiplier that ensures to reach the" <<
Endl;
1793 Log() <<
"minimal temperature with the requested number of iteration steps." <<
Endl;
1794 Log() <<
"The performance can be improved by adjusting the minimal temperature" <<
Endl;
1795 Log() <<
" (\"MinTemperature\") and by increasing number of steps (\"MaxCalls\"):" << brk <<
Endl;
1796 Log() <<
" -> increase \"MaxCalls\"" << brk <<
Endl;
1797 Log() <<
" -> adjust \"MinTemperature\"" <<
Endl;
1799 Log() <<
"Other kernels:" <<
Endl;
1801 Log() <<
"Alternative ways of counting the temperature change are implemented. " <<
Endl;
1802 Log() <<
"Each of them starts with the maximum temperature (\"MaxTemperature\")" <<
Endl;
1803 Log() <<
"and decreases while changing the temperature according to a given" <<
Endl;
1804 Log() <<
"prescription:" << brk <<
Endl;
1805 Log() <<
"CurrentTemperature =" << brk <<
Endl;
1806 Log() <<
" - Sqrt: InitialTemperature / Sqrt(StepNumber+2) * TemperatureScale" << brk <<
Endl;
1807 Log() <<
" - Log: InitialTemperature / Log(StepNumber+2) * TemperatureScale" << brk <<
Endl;
1808 Log() <<
" - Homo: InitialTemperature / (StepNumber+2) * TemperatureScale" << brk <<
Endl;
1809 Log() <<
" - Sin: (Sin(StepNumber / TemperatureScale) + 1) / (StepNumber + 1)*InitialTemperature + Eps" << brk <<
Endl;
1810 Log() <<
" - Geo: CurrentTemperature * TemperatureScale" <<
Endl;
1812 Log() <<
"Their performance can be improved by adjusting initial temperature" <<
Endl;
1813 Log() <<
"(\"InitialTemperature\"), the number of iteration steps (\"MaxCalls\")," <<
Endl;
1814 Log() <<
"and the multiplier that scales the temperature decrease" <<
Endl;
1815 Log() <<
"(\"TemperatureScale\")" << brk <<
Endl;
1816 Log() <<
" -> increase \"MaxCalls\"" << brk <<
Endl;
1817 Log() <<
" -> adjust \"InitialTemperature\"" << brk <<
Endl;
1818 Log() <<
" -> adjust \"TemperatureScale\"" << brk <<
Endl;
1819 Log() <<
" -> adjust \"KernelTemperature\"" <<
Endl;
#define REGISTER_METHOD(CLASS)
for example
static RooMathCoreReg dummy
char * Form(const char *fmt,...)
virtual Int_t FindBin(Double_t x)
Find bin number corresponding to abscissa x.
virtual Int_t GetSize() const
Return the capacity of the collection, i.e.
A Graph is a graphics object made of two arrays X and Y with npoints each.
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Set x and y values for point number i.
1-D histogram with a float per channel (see TH1 documentation)}
TAxis * GetXaxis()
Get the behaviour adopted by the object about the statoverflows. See EStatOverflows for more informat...
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
virtual TObject * At(Int_t idx) const
Returns the object at position idx. Returns 0 if idx is out of range.
A simple Binary search tree including a volume search method.
Bool_t WriteOptionsReference() const
void CheckForUnusedOptions() const
checks for unused options in option string
Class that contains all the data information.
Float_t GetValue(UInt_t ivar) const
return value of i'th variable
Base class for TMVA fitters.
void SetIPythonInteractive(bool *ExitFromTraining, UInt_t *fIPyMaxIter_, UInt_t *fIPyCurrentIter_)
Double_t Run()
estimator function interface for fitting
Fitter using a Genetic Algorithm.
The TMVA::Interval Class.
Fitter using Monte Carlo sampling of parameters.
Virtual base Class for all MVA method.
Multivariate optimisation of signal efficiency for given background efficiency, applying rectangular ...
Double_t ComputeEstimator(std::vector< Double_t > &)
returns estimator for "cut fitness" used by GA.
void MakeClassSpecific(std::ostream &, const TString &) const
write specific classifier response
void ReadWeightsFromStream(std::istream &i)
read the cuts from stream
Double_t GetEfficiency(const TString &, Types::ETreeType, Double_t &)
Overloaded function to create background efficiency (rejection) versus signal efficiency plot (first ...
Double_t EstimatorFunction(std::vector< Double_t > &)
returns estimator for "cut fitness" used by GA
void DeclareOptions()
define the options (their key words) that can be set in the option string.
void MatchCutsToPars(std::vector< Double_t > &, Double_t *, Double_t *)
translates cuts into parameters
void GetHelpMessage() const
get help message text
void Train(void)
training method: here the cuts are optimised for the training sample
static const Double_t fgMaxAbsCutVal
void CreateVariablePDFs(void)
for PDF method: create efficiency reference histograms and PDFs
void GetEffsfromSelection(Double_t *cutMin, Double_t *cutMax, Double_t &effS, Double_t &effB)
compute signal and background efficiencies from event counting for given cut sample
void AddWeightsXMLTo(void *parent) const
create XML description for LD classification and regression (for arbitrary number of output classes/t...
void Init(void)
default initialisation called by all constructors
Double_t GetTrainingEfficiency(const TString &)
Overloaded function to create background efficiency (rejection) versus signal efficiency plot (first ...
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
Cuts can only handle classification with 2 classes.
void ProcessOptions()
process user options.
void WriteMonitoringHistosToFile(void) const
write histograms and PDFs to file for monitoring purposes
void MatchParsToCuts(const std::vector< Double_t > &, Double_t *, Double_t *)
translates parameters into cuts
virtual ~MethodCuts(void)
destructor
void TestClassification()
nothing to test
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
cut evaluation: returns 1.0 if event passed, 0.0 otherwise
void ReadWeightsFromXML(void *wghtnode)
read coefficients from xml weight file
void GetEffsfromPDFs(Double_t *cutMin, Double_t *cutMax, Double_t &effS, Double_t &effB)
compute signal and background efficiencies from PDFs for given cut sample
Double_t GetCuts(Double_t effS, std::vector< Double_t > &cutMin, std::vector< Double_t > &cutMax) const
retrieve cut values for given signal efficiency
void PrintCuts(Double_t effS) const
print cuts
PDF wrapper for histograms; uses user-defined spline interpolation.
Class that is the base-class for a vector of result.
TH1 * GetHist(const TString &alias) const
void Store(TObject *obj, const char *alias=0)
Fitter using a Simulated Annealing Algorithm.
Linear interpolation of TGraph.
Timing information for training and evaluation of MVA methods.
void DrawProgressBar(Int_t, const TString &comment="")
draws progress bar in color or B&W caution:
Singleton class for Global types used by TMVA.
Volume for BinarySearchTree.
Collectable string class.
virtual Int_t Write(const char *name=0, Int_t option=0, Int_t bufsize=0)
Write this object to the current directory.
Random number generator class based on M.
virtual Double_t Uniform(Double_t x1=1)
Returns a uniform deviate on the interval (0, x1).
const char * Data() const
void Clone(Ssiz_t nc)
Make self a distinct copy with capacity of at least tot, where tot cannot be smaller than the current...
std::string GetMethodName(TCppMethod_t)
std::string GetName(const std::string &scope_name)
MsgLogger & Endl(MsgLogger &ml)
Short_t Max(Short_t a, Short_t b)
Double_t Sqrt(Double_t x)
Short_t Min(Short_t a, Short_t b)