100 , fDetailedMonitoring(
kFALSE)
103 , fBaggedSampleFraction(0)
104 , fBoostedMethodTitle(methodTitle)
105 , fBoostedMethodOptions(theOption)
106 , fMonitorBoostedMethod(
kFALSE)
111 , fOverlap_integral(0.0)
125 , fDetailedMonitoring(
kFALSE)
128 , fBaggedSampleFraction(0)
129 , fBoostedMethodTitle(
"")
130 , fBoostedMethodOptions(
"")
131 , fMonitorBoostedMethod(
kFALSE)
136 , fOverlap_integral(0.0)
149 fMethodWeight.clear();
153 fTrainSigMVAHist.clear();
154 fTrainBgdMVAHist.clear();
155 fBTrainSigMVAHist.clear();
156 fBTrainBgdMVAHist.clear();
157 fTestSigMVAHist.clear();
158 fTestBgdMVAHist.clear();
182 DeclareOptionRef( fBoostNum = 1,
"Boost_Num",
183 "Number of times the classifier is boosted" );
185 DeclareOptionRef( fMonitorBoostedMethod =
kTRUE,
"Boost_MonitorMethod",
186 "Write monitoring histograms for each boosted classifier" );
188 DeclareOptionRef( fDetailedMonitoring =
kFALSE,
"Boost_DetailedMonitoring",
189 "Produce histograms for detailed boost monitoring" );
191 DeclareOptionRef( fBoostType =
"AdaBoost",
"Boost_Type",
"Boosting type for the classifiers" );
192 AddPreDefVal(
TString(
"RealAdaBoost"));
193 AddPreDefVal(
TString(
"AdaBoost"));
194 AddPreDefVal(
TString(
"Bagging"));
196 DeclareOptionRef(fBaggedSampleFraction=.6,
"Boost_BaggedSampleFraction",
"Relative size of bagged event sample to original size of the data sample (used whenever bagging is used)" );
198 DeclareOptionRef( fAdaBoostBeta = 1.0,
"Boost_AdaBoostBeta",
199 "The ADA boost parameter that sets the effect of every boost step on the events' weights" );
201 DeclareOptionRef( fTransformString =
"step",
"Boost_Transform",
202 "Type of transform applied to every boosted method linear, log, step" );
204 AddPreDefVal(
TString(
"linear"));
206 AddPreDefVal(
TString(
"gauss"));
208 DeclareOptionRef( fRandomSeed = 0,
"Boost_RandomSeed",
209 "Seed for random number generator used for bagging" );
224 DeclareOptionRef( fHistoricOption =
"ByError",
"Boost_MethodWeightType",
225 "How to set the final weight of the boosted classifiers" );
226 AddPreDefVal(
TString(
"ByError"));
227 AddPreDefVal(
TString(
"Average"));
228 AddPreDefVal(
TString(
"ByROC"));
229 AddPreDefVal(
TString(
"ByOverlap"));
230 AddPreDefVal(
TString(
"LastMethod"));
232 DeclareOptionRef( fHistoricOption =
"step",
"Boost_Transform",
233 "Type of transform applied to every boosted method linear, log, step" );
235 AddPreDefVal(
TString(
"linear"));
237 AddPreDefVal(
TString(
"gauss"));
242 AddPreDefVal(
TString(
"HighEdgeGauss"));
243 AddPreDefVal(
TString(
"HighEdgeCoPara"));
246 DeclareOptionRef( fHistoricBoolOption,
"Boost_RecalculateMVACut",
247 "Recalculate the classifier MVA Signallike cut at every boost iteration" );
257 fBoostedMethodTitle = methodTitle;
258 fBoostedMethodOptions = theOption;
280 results->
Store(
new TH1F(
"MethodWeight",
"Normalized Classifier Weight",fBoostNum,0,fBoostNum),
"ClassifierWeight");
281 results->
Store(
new TH1F(
"BoostWeight",
"Boost Weight",fBoostNum,0,fBoostNum),
"BoostWeight");
282 results->
Store(
new TH1F(
"ErrFraction",
"Error Fraction (by boosted event weights)",fBoostNum,0,fBoostNum),
"ErrorFraction");
283 if (fDetailedMonitoring){
284 results->
Store(
new TH1F(
"ROCIntegral_test",
"ROC integral of single classifier (testing sample)",fBoostNum,0,fBoostNum),
"ROCIntegral_test");
285 results->
Store(
new TH1F(
"ROCIntegralBoosted_test",
"ROC integral of boosted method (testing sample)",fBoostNum,0,fBoostNum),
"ROCIntegralBoosted_test");
286 results->
Store(
new TH1F(
"ROCIntegral_train",
"ROC integral of single classifier (training sample)",fBoostNum,0,fBoostNum),
"ROCIntegral_train");
287 results->
Store(
new TH1F(
"ROCIntegralBoosted_train",
"ROC integral of boosted method (training sample)",fBoostNum,0,fBoostNum),
"ROCIntegralBoosted_train");
288 results->
Store(
new TH1F(
"OverlapIntegal_train",
"Overlap integral (training sample)",fBoostNum,0,fBoostNum),
"Overlap");
298 if (fDetailedMonitoring){
311 results->
Store(
new TH1F(
"SoverBtotal",
"S/B in reweighted training sample",fBoostNum,0,fBoostNum),
"SoverBtotal");
315 results->
Store(
new TH1F(
"SeparationGain",
"SeparationGain",fBoostNum,0,fBoostNum),
"SeparationGain");
321 fMonitorTree=
new TTree(
"MonitorBoost",
"Boost variables");
322 fMonitorTree->Branch(
"iMethod",&fCurrentMethodIdx,
"iMethod/I");
323 fMonitorTree->Branch(
"boostWeight",&fBoostWeight,
"boostWeight/D");
324 fMonitorTree->Branch(
"errorFraction",&fMethodError,
"errorFraction/D");
325 fMonitorBoostedMethod =
kTRUE;
334 Log() << kDEBUG <<
"CheckSetup: fBoostType="<<fBoostType <<
Endl;
335 Log() << kDEBUG <<
"CheckSetup: fAdaBoostBeta="<<fAdaBoostBeta<<
Endl;
336 Log() << kDEBUG <<
"CheckSetup: fBoostWeight="<<fBoostWeight<<
Endl;
337 Log() << kDEBUG <<
"CheckSetup: fMethodError="<<fMethodError<<
Endl;
338 Log() << kDEBUG <<
"CheckSetup: fBoostNum="<<fBoostNum <<
Endl;
339 Log() << kDEBUG <<
"CheckSetup: fRandomSeed=" << fRandomSeed<<
Endl;
340 Log() << kDEBUG <<
"CheckSetup: fTrainSigMVAHist.size()="<<fTrainSigMVAHist.size()<<
Endl;
341 Log() << kDEBUG <<
"CheckSetup: fTestSigMVAHist.size()="<<fTestSigMVAHist.size()<<
Endl;
342 Log() << kDEBUG <<
"CheckSetup: fMonitorBoostedMethod=" << (fMonitorBoostedMethod?
"true" :
"false") <<
Endl;
343 Log() << kDEBUG <<
"CheckSetup: MName=" << fBoostedMethodName <<
" Title="<< fBoostedMethodTitle<<
Endl;
344 Log() << kDEBUG <<
"CheckSetup: MOptions="<< fBoostedMethodOptions <<
Endl;
345 Log() << kDEBUG <<
"CheckSetup: fMonitorTree=" << fMonitorTree <<
Endl;
346 Log() << kDEBUG <<
"CheckSetup: fCurrentMethodIdx=" <<fCurrentMethodIdx <<
Endl;
347 if (fMethods.size()>0)
Log() << kDEBUG <<
"CheckSetup: fMethods[0]" <<fMethods[0]<<
Endl;
348 Log() << kDEBUG <<
"CheckSetup: fMethodWeight.size()" << fMethodWeight.size() <<
Endl;
349 if (fMethodWeight.size()>0)
Log() << kDEBUG <<
"CheckSetup: fMethodWeight[0]="<<fMethodWeight[0]<<
Endl;
350 Log() << kDEBUG <<
"CheckSetup: trying to repair things" <<
Endl;
365 if (Data()->GetNTrainingEvents()==0)
Log() << kFATAL <<
"<Train> Data() has zero events" <<
Endl;
368 if (fMethods.size() > 0) fMethods.clear();
369 fMVAvalues->resize(Data()->GetNTrainingEvents(), 0.0);
371 Log() << kINFO <<
"Training "<< fBoostNum <<
" " << fBoostedMethodName <<
" with title " << fBoostedMethodTitle <<
" Classifiers ... patience please" <<
Endl;
382 Ssiz_t varTrafoStart=fBoostedMethodOptions.Index(
"~VarTransform=");
383 if (varTrafoStart >0) {
384 Ssiz_t varTrafoEnd =fBoostedMethodOptions.Index(
":",varTrafoStart);
385 if (varTrafoEnd<varTrafoStart)
386 varTrafoEnd=fBoostedMethodOptions.Length();
387 fBoostedMethodOptions.Remove(varTrafoStart,varTrafoEnd-varTrafoStart);
392 for (fCurrentMethodIdx=0;fCurrentMethodIdx<fBoostNum;fCurrentMethodIdx++) {
397 fBoostedMethodName.Data(), GetJobName(),
Form(
"%s_B%04i", fBoostedMethodTitle.Data(), fCurrentMethodIdx),
398 DataInfo(), fBoostedMethodOptions);
402 fCurrentMethod = (
dynamic_cast<MethodBase*
>(method));
404 if (fCurrentMethod==0) {
405 Log() << kFATAL <<
"uups.. guess the booking of the " << fCurrentMethodIdx <<
"-th classifier somehow failed" <<
Endl;
413 Log() << kFATAL <<
"Method with type kCategory cannot be casted to MethodCategory. /MethodBoost" <<
Endl;
417 fCurrentMethod->SetMsgType(kWARNING);
418 fCurrentMethod->SetupMethod();
419 fCurrentMethod->ParseOptions();
421 fCurrentMethod->SetAnalysisType( GetAnalysisType() );
422 fCurrentMethod->ProcessSetup();
423 fCurrentMethod->CheckSetup();
427 fCurrentMethod->RerouteTransformationHandler (&(this->GetTransformationHandler()));
433 if (fMonitorBoostedMethod) {
434 methodDir=GetFile()->
GetDirectory(dirName=
Form(
"%s_B%04i",fBoostedMethodName.Data(),fCurrentMethodIdx));
436 methodDir=BaseDir()->
mkdir(dirName,dirTitle=
Form(
"Directory Boosted %s #%04i", fBoostedMethodName.Data(),fCurrentMethodIdx));
438 fCurrentMethod->SetMethodDir(methodDir);
439 fCurrentMethod->BaseDir()->
cd();
449 if (fBoostType==
"Bagging") Bagging();
452 if(!IsSilentFile())fCurrentMethod->WriteMonitoringHistosToFile();
458 if(!IsSilentFile())
if (fCurrentMethodIdx==0 && fMonitorBoostedMethod) CreateMVAHistorgrams();
466 SingleBoost(fCurrentMethod);
472 if (fDetailedMonitoring) {
483 fMonitorTree->Fill();
487 Log() << kDEBUG <<
"AdaBoost (methodErr) err = " << fMethodError <<
Endl;
488 if (fMethodError > 0.49999) StopCounter++;
489 if (StopCounter > 0 && fBoostType !=
"Bagging") {
491 fBoostNum = fCurrentMethodIdx+1;
492 Log() << kINFO <<
"Error rate has reached 0.5 ("<< fMethodError<<
"), boosting process stopped at #" << fBoostNum <<
" classifier" <<
Endl;
494 Log() << kINFO <<
"The classifier might be too strong to boost with Beta = " << fAdaBoostBeta <<
", try reducing it." <<
Endl;
506 for (fCurrentMethodIdx=0;fCurrentMethodIdx<fBoostNum;fCurrentMethodIdx++) {
511 if (fCurrentMethodIdx==fBoostNum) {
516 TH1F* tmp =
dynamic_cast<TH1F*
>( results->
GetHist(
"ClassifierWeight") );
517 if (tmp) tmp->
SetBinContent(fCurrentMethodIdx+1,fMethodWeight[fCurrentMethodIdx]);
526 if (fMethods.size()==1) fMethodWeight[0] = 1.0;
537 fBoostedMethodOptions=GetOptions();
544 if (fBoostNum <=0)
Log() << kFATAL <<
"CreateHistograms called before fBoostNum is initialized" <<
Endl;
548 Int_t signalClass = 0;
549 if (DataInfo().GetClassInfo(
"Signal") != 0) {
550 signalClass = DataInfo().GetClassInfo(
"Signal")->GetNumber();
553 meanS, meanB, rmsS, rmsB,
xmin,
xmax, signalClass );
560 for (
UInt_t imtd=0; imtd<fBoostNum; imtd++) {
561 fTrainSigMVAHist .push_back(
new TH1F(
Form(
"MVA_Train_S_%04i",imtd),
"MVA_Train_S", fNbins,
xmin,
xmax ) );
562 fTrainBgdMVAHist .push_back(
new TH1F(
Form(
"MVA_Train_B%04i", imtd),
"MVA_Train_B", fNbins,
xmin,
xmax ) );
563 fBTrainSigMVAHist.push_back(
new TH1F(
Form(
"MVA_BTrain_S%04i",imtd),
"MVA_BoostedTrain_S", fNbins,
xmin,
xmax ) );
564 fBTrainBgdMVAHist.push_back(
new TH1F(
Form(
"MVA_BTrain_B%04i",imtd),
"MVA_BoostedTrain_B", fNbins,
xmin,
xmax ) );
565 fTestSigMVAHist .push_back(
new TH1F(
Form(
"MVA_Test_S%04i", imtd),
"MVA_Test_S", fNbins,
xmin,
xmax ) );
566 fTestBgdMVAHist .push_back(
new TH1F(
Form(
"MVA_Test_B%04i", imtd),
"MVA_Test_B", fNbins,
xmin,
xmax ) );
575 for (
Long64_t ievt=0; ievt<GetNEvents(); ievt++) {
576 const Event *ev = Data()->GetEvent(ievt);
586 if (fMonitorBoostedMethod) {
587 for (
UInt_t imtd=0;imtd<fBoostNum;imtd++) {
594 fTrainSigMVAHist[imtd]->SetDirectory(dir);
595 fTrainSigMVAHist[imtd]->Write();
596 fTrainBgdMVAHist[imtd]->SetDirectory(dir);
597 fTrainBgdMVAHist[imtd]->Write();
598 fBTrainSigMVAHist[imtd]->SetDirectory(dir);
599 fBTrainSigMVAHist[imtd]->Write();
600 fBTrainBgdMVAHist[imtd]->SetDirectory(dir);
601 fBTrainBgdMVAHist[imtd]->Write();
608 fMonitorTree->Write();
616 if (fMonitorBoostedMethod) {
617 UInt_t nloop = fTestSigMVAHist.size();
618 if (fMethods.size()<nloop) nloop = fMethods.size();
621 for (
Long64_t ievt=0; ievt<GetNEvents(); ievt++) {
622 const Event* ev = GetEvent(ievt);
624 if (DataInfo().IsSignal(ev)) {
625 for (
UInt_t imtd=0; imtd<nloop; imtd++) {
626 fTestSigMVAHist[imtd]->Fill(fMethods[imtd]->GetMvaValue(),w);
630 for (
UInt_t imtd=0; imtd<nloop; imtd++) {
631 fTestBgdMVAHist[imtd]->Fill(fMethods[imtd]->GetMvaValue(),w);
645 UInt_t nloop = fTestSigMVAHist.size();
646 if (fMethods.size()<nloop) nloop = fMethods.size();
647 if (fMonitorBoostedMethod) {
649 for (
UInt_t imtd=0;imtd<nloop;imtd++) {
654 if (dir==0)
continue;
656 fTestSigMVAHist[imtd]->SetDirectory(dir);
657 fTestSigMVAHist[imtd]->Write();
658 fTestBgdMVAHist[imtd]->SetDirectory(dir);
659 fTestBgdMVAHist[imtd]->Write();
680 if(IsModelPersistence()){
681 TString _fFileDir= DataInfo().GetName();
699 const Int_t nBins=10001;
702 for (
Long64_t ievt=0; ievt<Data()->GetNEvents(); ievt++) {
706 if (val>maxMVA) maxMVA=val;
707 if (val<minMVA) minMVA=val;
709 maxMVA = maxMVA+(maxMVA-minMVA)/nBins;
713 TH1D *mvaS =
new TH1D(
Form(
"MVAS_%d",fCurrentMethodIdx) ,
"",nBins,minMVA,maxMVA);
714 TH1D *mvaB =
new TH1D(
Form(
"MVAB_%d",fCurrentMethodIdx) ,
"",nBins,minMVA,maxMVA);
715 TH1D *mvaSC =
new TH1D(
Form(
"MVASC_%d",fCurrentMethodIdx),
"",nBins,minMVA,maxMVA);
716 TH1D *mvaBC =
new TH1D(
Form(
"MVABC_%d",fCurrentMethodIdx),
"",nBins,minMVA,maxMVA);
720 if (fDetailedMonitoring){
721 results->
Store(mvaS,
Form(
"MVAS_%d",fCurrentMethodIdx));
722 results->
Store(mvaB,
Form(
"MVAB_%d",fCurrentMethodIdx));
723 results->
Store(mvaSC,
Form(
"MVASC_%d",fCurrentMethodIdx));
724 results->
Store(mvaBC,
Form(
"MVABC_%d",fCurrentMethodIdx));
727 for (
Long64_t ievt=0; ievt<Data()->GetNEvents(); ievt++) {
729 Double_t weight = GetEvent(ievt)->GetWeight();
732 if (DataInfo().IsSignal(GetEvent(ievt))){
733 mvaS->
Fill(mvaVal,weight);
735 mvaB->
Fill(mvaVal,weight);
771 for (
Int_t ibin=1;ibin<=nBins;ibin++){
782 if (separationGain < sepGain->GetSeparationGain(sSel,bSel,sTot,bTot)
789 if (sSel*(bTot-bSel) > (sTot-sSel)*bSel) mvaCutOrientation=-1;
790 else mvaCutOrientation=1;
823 <<
" s2="<<(sTot-sSelCut)
824 <<
" b2="<<(bTot-bSelCut)
825 <<
" s/b(1)=" << sSelCut/bSelCut
826 <<
" s/b(2)=" << (sTot-sSelCut)/(bTot-bSelCut)
827 <<
" index before cut=" << parentIndex
828 <<
" after: left=" << leftIndex
829 <<
" after: right=" << rightIndex
830 <<
" sepGain=" << parentIndex-( (sSelCut+bSelCut) * leftIndex + (sTot-sSelCut+bTot-bSelCut) * rightIndex )/(sTot+bTot)
831 <<
" sepGain="<<separationGain
834 <<
" idx="<<fCurrentMethodIdx
835 <<
" cutOrientation="<<mvaCutOrientation
862 if (fBoostType==
"AdaBoost") returnVal = this->AdaBoost (method,1);
863 else if (fBoostType==
"RealAdaBoost") returnVal = this->AdaBoost (method,0);
864 else if (fBoostType==
"Bagging") returnVal = this->Bagging ();
866 Log() << kFATAL <<
"<Boost> unknown boost option " << fBoostType<<
" called" <<
Endl;
868 fMethodWeight.push_back(returnVal);
877 Log() << kWARNING <<
" AdaBoost called without classifier reference - needed for calculating AdaBoost " <<
Endl;
886 if (discreteAdaBoost) {
897 for (
Long64_t evt=0; evt<GetNEvents(); evt++) {
898 const Event* ev = Data()->GetEvent(evt);
904 for (
Long64_t ievt=0; ievt<GetNEvents(); ievt++) WrongDetection[ievt]=
kTRUE;
907 for (
Long64_t ievt=0; ievt<GetNEvents(); ievt++) {
908 const Event* ev = GetEvent(ievt);
909 sig=DataInfo().IsSignal(ev);
910 v = fMVAvalues->at(ievt);
915 if (fMonitorBoostedMethod) {
917 fBTrainSigMVAHist[fCurrentMethodIdx]->Fill(
v,w);
921 fBTrainBgdMVAHist[fCurrentMethodIdx]->Fill(
v,w);
927 if (discreteAdaBoost){
929 WrongDetection[ievt]=
kFALSE;
931 WrongDetection[ievt]=
kTRUE;
936 mvaProb = 2*(mvaProb-0.5);
938 if (DataInfo().IsSignal(ev)) trueType = 1;
940 sumWrong+= w*trueType*mvaProb;
944 fMethodError=sumWrong/sumAll;
951 if (fMethodError == 0) {
952 Log() << kWARNING <<
"Your classifier worked perfectly on the training sample --> serious overtraining expected and no boosting done " <<
Endl;
955 if (discreteAdaBoost)
956 boostWeight =
TMath::Log((1.-fMethodError)/fMethodError)*fAdaBoostBeta;
958 boostWeight =
TMath::Log((1.+fMethodError)/(1-fMethodError))*fAdaBoostBeta;
974 for (
Long64_t ievt=0; ievt<GetNEvents(); ievt++) {
975 const Event* ev = Data()->GetEvent(ievt);
977 if (discreteAdaBoost){
979 if (WrongDetection[ievt] && boostWeight != 0) {
990 mvaProb = 2*(mvaProb-0.5);
994 if (DataInfo().IsSignal(ev)) trueType = 1;
997 boostfactor =
TMath::Exp(-1*boostWeight*trueType*mvaProb);
1005 Double_t normWeight = oldSum/newSum;
1008 for (
Long64_t ievt=0; ievt<GetNEvents(); ievt++) {
1009 const Event* ev = Data()->GetEvent(ievt);
1018 for (
Long64_t ievt=0; ievt<GetNEvents(); ievt++) {
1019 const Event* ev = Data()->GetEvent(ievt);
1026 delete[] WrongDetection;
1027 if (MVAProb)
delete MVAProb;
1029 fBoostWeight = boostWeight;
1041 for (
Long64_t ievt=0; ievt<GetNEvents(); ievt++) {
1042 const Event* ev = Data()->GetEvent(ievt);
1061 Log() <<
"This method combines several classifier of one species in a "<<
Endl;
1062 Log() <<
"single multivariate quantity via the boost algorithm." <<
Endl;
1063 Log() <<
"the output is a weighted sum over all individual classifiers" <<
Endl;
1064 Log() <<
"By default, the AdaBoost method is employed, which gives " <<
Endl;
1065 Log() <<
"events that were misclassified in the previous tree a larger " <<
Endl;
1066 Log() <<
"weight in the training of the following classifier."<<
Endl;
1067 Log() <<
"Optionally, Bagged boosting can also be applied." <<
Endl;
1071 Log() <<
"The most important parameter in the configuration is the "<<
Endl;
1072 Log() <<
"number of boosts applied (Boost_Num) and the choice of boosting"<<
Endl;
1073 Log() <<
"(Boost_Type), which can be set to either AdaBoost or Bagging." <<
Endl;
1074 Log() <<
"AdaBoosting: The most important parameters in this configuration" <<
Endl;
1075 Log() <<
"is the beta parameter (Boost_AdaBoostBeta) " <<
Endl;
1076 Log() <<
"When boosting a linear classifier, it is sometimes advantageous"<<
Endl;
1077 Log() <<
"to transform the MVA output non-linearly. The following options" <<
Endl;
1078 Log() <<
"are available: step, log, and minmax, the default is no transform."<<
Endl;
1080 Log() <<
"Some classifiers are hard to boost and do not improve much in"<<
Endl;
1081 Log() <<
"their performance by boosting them, some even slightly deteriorate"<<
Endl;
1082 Log() <<
"due to the boosting." <<
Endl;
1083 Log() <<
"The booking of the boost method is special since it requires"<<
Endl;
1084 Log() <<
"the booing of the method to be boosted and the boost itself."<<
Endl;
1085 Log() <<
"This is solved by booking the method to be boosted and to add"<<
Endl;
1086 Log() <<
"all Boost parameters, which all begin with \"Boost_\" to the"<<
Endl;
1087 Log() <<
"options string. The factory separates the options and initiates"<<
Endl;
1088 Log() <<
"the boost process. The TMVA macro directory contains the example"<<
Endl;
1089 Log() <<
"macro \"Boost.C\"" <<
Endl;
1108 for (
UInt_t i=0;i< fMethods.size(); i++){
1111 Double_t val = fTmpEvent ?
m->GetMvaValue(fTmpEvent) :
m->GetMvaValue();
1112 Double_t sigcut =
m->GetSignalReferenceCut();
1115 if (fTransformString ==
"linear"){
1118 else if (fTransformString ==
"log"){
1119 if (val < sigcut) val = sigcut;
1123 else if (fTransformString ==
"step" ){
1124 if (
m->IsSignalLike(val)) val = 1.;
1127 else if (fTransformString ==
"gauss"){
1131 Log() << kFATAL <<
"error unknown transformation " << fTransformString<<
Endl;
1133 mvaValue+=val*fMethodWeight[i];
1134 norm +=fMethodWeight[i];
1139 NoErrorCalc(err, errUpper);
1166 Data()->SetCurrentType(eTT);
1172 if (singleMethod && !method) {
1173 Log() << kFATAL <<
" What do you do? Your method:"
1174 << fMethods.back()->GetName()
1175 <<
" seems not to be a propper TMVA method"
1184 std::vector<Double_t> OldMethodWeight(fMethodWeight);
1185 if (!singleMethod) {
1188 for (
UInt_t i=0; i<=fCurrentMethodIdx; i++)
1189 AllMethodsWeight += fMethodWeight.at(i);
1191 if (AllMethodsWeight != 0.0) {
1192 for (
UInt_t i=0; i<=fCurrentMethodIdx; i++)
1193 fMethodWeight[i] /= AllMethodsWeight;
1199 std::vector <Float_t>* mvaRes;
1201 mvaRes = fMVAvalues;
1203 mvaRes =
new std::vector <Float_t>(GetNEvents());
1204 for (
Long64_t ievt=0; ievt<GetNEvents(); ievt++) {
1206 (*mvaRes)[ievt] = singleMethod ? method->
GetMvaValue(&err) : GetMvaValue(&err);
1212 fMethodWeight = OldMethodWeight;
1215 Int_t signalClass = 0;
1216 if (DataInfo().GetClassInfo(
"Signal") != 0) {
1217 signalClass = DataInfo().GetClassInfo(
"Signal")->GetNumber();
1220 meanS, meanB, rmsS, rmsB,
xmin,
xmax, signalClass );
1229 TH1 *mva_s_overlap=0, *mva_b_overlap=0;
1230 if (CalcOverlapIntergral) {
1231 mva_s_overlap =
new TH1F(
"MVA_S_OVERLAP",
"MVA_S_OVERLAP", fNbins,
xmin,
xmax );
1232 mva_b_overlap =
new TH1F(
"MVA_B_OVERLAP",
"MVA_B_OVERLAP", fNbins,
xmin,
xmax );
1234 for (
Long64_t ievt=0; ievt<GetNEvents(); ievt++) {
1235 const Event* ev = GetEvent(ievt);
1237 if (DataInfo().IsSignal(ev)) mva_s->
Fill( (*mvaRes)[ievt], w );
1238 else mva_b->
Fill( (*mvaRes)[ievt], w );
1240 if (CalcOverlapIntergral) {
1242 if (DataInfo().IsSignal(ev))
1243 mva_s_overlap->
Fill( (*mvaRes)[ievt], w_ov );
1245 mva_b_overlap->Fill( (*mvaRes)[ievt], w_ov );
1257 if (CalcOverlapIntergral) {
1261 fOverlap_integral = 0.0;
1264 Double_t bc_b = mva_b_overlap->GetBinContent(bin);
1265 if (bc_s > 0.0 && bc_b > 0.0)
1269 delete mva_s_overlap;
1270 delete mva_b_overlap;
1292 Log() << kFATAL <<
"dynamic cast to MethodBase* failed" <<
Endl;
1296 for (
Long64_t ievt=0; ievt<GetNEvents(); ievt++) {
1320 results->
Store(
new TH1I(
"NodesBeforePruning",
"nodes before pruning",this->GetBoostNum(),0,this->GetBoostNum()),
"NodesBeforePruning");
1321 results->
Store(
new TH1I(
"NodesAfterPruning",
"nodes after pruning",this->GetBoostNum(),0,this->GetBoostNum()),
"NodesAfterPruning");
1334 Log() << kINFO <<
"<Train> average number of nodes before/after pruning : "
1346 if (methodIndex < 3){
1347 Log() << kDEBUG <<
"No detailed boost monitoring for "
1348 << GetCurrentMethod(methodIndex)->GetMethodName()
1349 <<
" yet available " <<
Endl;
1357 if (fDetailedMonitoring){
1359 if (DataInfo().GetNVariables() == 2) {
1360 results->
Store(
new TH2F(
Form(
"EventDistSig_%d",methodIndex),
Form(
"EventDistSig_%d",methodIndex),100,0,7,100,0,7));
1362 results->
Store(
new TH2F(
Form(
"EventDistBkg_%d",methodIndex),
Form(
"EventDistBkg_%d",methodIndex),100,0,7,100,0,7));
1366 for (
Long64_t ievt=0; ievt<GetNEvents(); ievt++) {
1367 const Event* ev = GetEvent(ievt);
1373 if (DataInfo().IsSignal(ev))
h=results->
GetHist2D(
Form(
"EventDistSig_%d",methodIndex));
#define REGISTER_METHOD(CLASS)
for example
char * Form(const char *fmt,...)
virtual void SetMarkerColor(Color_t mcolor=1)
Set the marker color.
Describe directory structure in memory.
virtual TDirectory * GetDirectory(const char *namecycle, Bool_t printError=false, const char *funcname="GetDirectory")
Find a directory using apath.
virtual TDirectory * mkdir(const char *name, const char *title="", Bool_t returnExistingDirectory=kFALSE)
Create a sub-directory "a" or a hierarchy of sub-directories "a/b/c/...".
virtual Bool_t cd(const char *path=nullptr)
Change current directory to "this" directory.
1-D histogram with a double per channel (see TH1 documentation)}
1-D histogram with a float per channel (see TH1 documentation)}
1-D histogram with an int per channel (see TH1 documentation)}
virtual Double_t GetMean(Int_t axis=1) const
For axis = 1,2 or 3 returns the mean value of the histogram along X,Y or Z axis.
TAxis * GetXaxis()
Get the behaviour adopted by the object about the statoverflows. See EStatOverflows for more informat...
virtual Int_t GetNbinsX() const
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
virtual Double_t GetBinLowEdge(Int_t bin) const
Return bin lower edge for 1D histogram.
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
2-D histogram with a float per channel (see TH1 documentation)}
Service class for 2-Dim histogram classes.
IMethod * Create(const std::string &name, const TString &job, const TString &title, DataSetInfo &dsi, const TString &option)
creates the method if needed based on the method name using the creator function the factory has stor...
static ClassifierFactory & Instance()
access to the ClassifierFactory singleton creates the instance if needed
class TMVA::Config::VariablePlotting fVariablePlotting
Class that contains all the data information.
void ScaleBoostWeight(Double_t s) const
void SetBoostWeight(Double_t w) const
Float_t GetValue(UInt_t ivar) const
return value of i'th variable
Double_t GetOriginalWeight() const
Double_t GetWeight() const
return the event weight - depending on whether the flag IgnoreNegWeightsInTraining is or not.
Implementation of the GiniIndex as separation criterion.
Interface for all concrete MVA method implementations.
Virtual base Class for all MVA method.
void SetSilentFile(Bool_t status)
void SetWeightFileDir(TString fileDir)
set directory of weight file
virtual void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility they are hence without any...
virtual void WriteEvaluationHistosToFile(Types::ETreeType treetype)
writes all MVA evaluation histograms to file
TDirectory * BaseDir() const
returns the ROOT directory where info/histograms etc of the corresponding MVA method instance are sto...
virtual Bool_t IsSignalLike()
uses a pre-set cut on the MVA output (SetSignalReferenceCut and SetSignalReferenceCutOrientation) for...
virtual void TestClassification()
initialization
virtual Double_t GetMvaValue(Double_t *errLower=0, Double_t *errUpper=0)=0
Types::EMVA GetMethodType() const
void SetSignalReferenceCut(Double_t cut)
void SetSignalReferenceCutOrientation(Double_t cutOrientation)
void SetModelPersistence(Bool_t status)
Double_t GetSignalReferenceCut() const
virtual Double_t GetROCIntegral(TH1D *histS, TH1D *histB) const
calculate the area (integral) under the ROC curve as a overall quality measure of the classification
Class for boosting a TMVA method.
void MonitorBoost(Types::EBoostStage stage, UInt_t methodIdx=0)
fill various monitoring histograms from information of the individual classifiers that have been boos...
void ResetBoostWeights()
resetting back the boosted weights of the events to 1
void SingleTrain()
initialization
DataSetManager * fDataSetManager
virtual void WriteEvaluationHistosToFile(Types::ETreeType treetype)
writes all MVA evaluation histograms to file
void CreateMVAHistorgrams()
Bool_t fHistoricBoolOption
void WriteMonitoringHistosToFile(void) const
write special monitoring histograms to file dummy implementation here --------------—
Double_t AdaBoost(MethodBase *method, Bool_t useYesNoLeaf)
the standard (discrete or real) AdaBoost algorithm
Bool_t BookMethod(Types::EMVA theMethod, TString methodTitle, TString theOption)
just registering the string from which the boosted classifier will be created
void CheckSetup()
check may be overridden by derived class (sometimes, eg, fitters are used which can only be implement...
virtual void TestClassification()
initialization
void InitHistos()
initialisation routine
void ProcessOptions()
process user options
Double_t GetBoostROCIntegral(Bool_t, Types::ETreeType, Bool_t CalcOverlapIntergral=kFALSE)
Calculate the ROC integral of a single classifier or even the whole boosted classifier.
Double_t SingleBoost(MethodBase *method)
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
return boosted MVA response
Double_t Bagging()
Bagging or Bootstrap boosting, gives new random poisson weight for every event.
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t)
Boost can handle classification with 2 classes and regression with one regression-target.
const Ranking * CreateRanking()
void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility they are hence without any...
std::vector< Float_t > * fMVAvalues
virtual ~MethodBoost(void)
destructor
void FindMVACut(MethodBase *method)
find the CUT on the individual MVA that defines an event as correct or misclassified (to be used in t...
void GetHelpMessage() const
Get help message text.
Class for categorizing the phase space.
DataSetManager * fDataSetManager
Virtual base class for combining several TMVA method.
std::vector< IMethod * > fMethods
Analysis of Boosted Decision Trees.
Int_t GetNNodesBeforePruning()
static void InhibitOutput()
static void EnableOutput()
PDF wrapper for histograms; uses user-defined spline interpolation.
Double_t GetMVAProbAt(Double_t value)
void AddEvent(Double_t val, Double_t weight, Int_t type)
Ranking for variables in method (implementation)
Class that is the base-class for a vector of result.
TH2 * GetHist2D(const TString &alias) const
TH1 * GetHist(const TString &alias) const
void Store(TObject *obj, const char *alias=0)
An interface to calculate the "SeparationGain" for different separation criteria used in various trai...
virtual Double_t GetSeparationGain(const Double_t nSelS, const Double_t nSelB, const Double_t nTotS, const Double_t nTotB)
Separation Gain: the measure of how the quality of separation of the sample increases by splitting th...
virtual Double_t GetSeparationIndex(const Double_t s, const Double_t b)=0
Timing information for training and evaluation of MVA methods.
TString GetElapsedTime(Bool_t Scientific=kTRUE)
returns pretty string with elapsed time
void DrawProgressBar(Int_t, const TString &comment="")
draws progress bar in color or B&W caution:
Singleton class for Global types used by TMVA.
TString GetMethodName(Types::EMVA method) const
static Types & Instance()
the the single instance of "Types" if existing already, or create it (Singleton)
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
virtual void Delete(Option_t *option="")
Delete this object.
Random number generator class based on M.
virtual Double_t PoissonD(Double_t mean)
Generates a random number according to a Poisson law.
void ToLower()
Change string to lower-case.
A TTree represents a columnar dataset.
std::string GetMethodName(TCppMethod_t)
std::string GetName(const std::string &scope_name)
RooCmdArg Timer(Bool_t flag=kTRUE)
create variable transformations
MsgLogger & Endl(MsgLogger &ml)
Double_t Gaus(Double_t x, Double_t mean=0, Double_t sigma=1, Bool_t norm=kFALSE)
Calculate a gaussian function with mean and sigma.
Short_t Max(Short_t a, Short_t b)
Short_t Min(Short_t a, Short_t b)
static long int sum(long int i)