Logo ROOT  
Reference Guide
PxPyPzM4D.h
Go to the documentation of this file.
1// @(#)root/mathcore:$Id: 464c29f33a8bbd8462a3e15b7e4c30c6f5b74a30 $
2// Authors: W. Brown, M. Fischler, L. Moneta 2005
3
4/**********************************************************************
5* *
6* Copyright (c) 2005 , LCG ROOT MathLib Team *
7* *
8* *
9**********************************************************************/
10
11// Header file for class PxPyPzM4D
12//
13// Created by: fischler at Wed Jul 20 2005
14// (starting from PxPyPzM4D by moneta)
15//
16// Last update: $Id: 464c29f33a8bbd8462a3e15b7e4c30c6f5b74a30 $
17//
18#ifndef ROOT_Math_GenVector_PxPyPzM4D
19#define ROOT_Math_GenVector_PxPyPzM4D 1
20
21#include "Math/GenVector/eta.h"
22
24
25
26#include <cmath>
27
28namespace ROOT {
29
30namespace Math {
31
32//__________________________________________________________________________________________
33/**
34 Class describing a 4D coordinate system
35 or momentum-energy vectors stored as (Px, Py, Pz, M).
36 This system is useful to describe ultra-relativistic particles
37 (like electrons at LHC) to avoid numerical errors evaluating the mass
38 when E >>> m
39 The metric used is (-,-,-,+)
40 Spacelike particles (M2 < 0) are described with negative mass values,
41 but in this case m2 must alwasy be less than P2 to preserve a positive value of E2
42
43 @ingroup GenVector
44*/
45
46template <class ScalarType = double>
47class PxPyPzM4D {
48
49public :
50
51 typedef ScalarType Scalar;
52
53 // --------- Constructors ---------------
54
55 /**
56 Default constructor with x=y=z=m=0
57 */
58 PxPyPzM4D() : fX(0.0), fY(0.0), fZ(0.0), fM(0.0) { }
59
60
61 /**
62 Constructor from x, y , z , m values
63 */
65 fX(px), fY(py), fZ(pz), fM(m) {
66
67 if (fM < 0) RestrictNegMass();
68 }
69
70 /**
71 construct from any 4D coordinate system class
72 implementing X(), Y(), X() and M()
73 */
74 template <class CoordSystem>
75 explicit PxPyPzM4D(const CoordSystem & v) :
76 fX( v.X() ), fY( v.Y() ), fZ( v.Z() ), fM( v.M() )
77 { }
78
79 // for g++ 3.2 and 3.4 on 32 bits found that the compiler generated copy ctor and assignment are much slower
80 // so we decided to re-implement them ( there is no no need to have them with g++4)
81 /**
82 copy constructor
83 */
85 fX(v.fX), fY(v.fY), fZ(v.fZ), fM(v.fM) { }
86
87 /**
88 assignment operator
89 */
91 fX = v.fX;
92 fY = v.fY;
93 fZ = v.fZ;
94 fM = v.fM;
95 return *this;
96 }
97
98
99 /**
100 construct from any 4D coordinate system class
101 implementing X(), Y(), X() and M()
102 */
103 template <class AnyCoordSystem>
104 PxPyPzM4D & operator = (const AnyCoordSystem & v) {
105 fX = v.X();
106 fY = v.Y();
107 fZ = v.Z();
108 fM = v.M();
109 return *this;
110 }
111
112 /**
113 Set internal data based on an array of 4 Scalar numbers
114 */
115 void SetCoordinates( const Scalar src[] ) {
116 fX=src[0]; fY=src[1]; fZ=src[2]; fM=src[3];
117 if (fM < 0) RestrictNegMass();
118 }
119
120 /**
121 get internal data into an array of 4 Scalar numbers
122 */
123 void GetCoordinates( Scalar dest[] ) const
124 { dest[0] = fX; dest[1] = fY; dest[2] = fZ; dest[3] = fM; }
125
126 /**
127 Set internal data based on 4 Scalar numbers
128 */
130 fX=px; fY=py; fZ=pz; fM=m;
131 if (fM < 0) RestrictNegMass();
132 }
133
134 /**
135 get internal data into 4 Scalar numbers
136 */
137 void GetCoordinates(Scalar& px, Scalar& py, Scalar& pz, Scalar& m) const
138 { px=fX; py=fY; pz=fZ; m=fM;}
139
140 // --------- Coordinates and Coordinate-like Scalar properties -------------
141
142 // cartesian (Minkowski)coordinate accessors
143
144 Scalar Px() const { return fX;}
145 Scalar Py() const { return fY;}
146 Scalar Pz() const { return fZ;}
147 Scalar M() const { return fM; }
148
149 Scalar X() const { return fX;}
150 Scalar Y() const { return fY;}
151 Scalar Z() const { return fZ;}
152
153 // other coordinate representation
154 /**
155 Energy
156 */
157 Scalar E() const { return sqrt(E2()); }
158
159 Scalar T() const { return E();}
160
161 /**
162 squared magnitude of spatial components
163 */
164 Scalar P2() const { return fX*fX + fY*fY + fZ*fZ; }
165
166 /**
167 magnitude of spatial components (magnitude of 3-momentum)
168 */
169 Scalar P() const { return sqrt(P2()); }
170 Scalar R() const { return P(); }
171
172 /**
173 vector magnitude squared (or mass squared)
174 In case of negative mass (spacelike particles return negative values)
175 */
176 Scalar M2() const {
177 return ( fM >= 0 ) ? fM*fM : -fM*fM;
178 }
179 Scalar Mag2() const { return M2(); }
180
181 Scalar Mag() const { return M(); }
182
183 /**
184 energy squared
185 */
186 Scalar E2() const {
187 Scalar e2 = P2() + M2();
188 // protect against numerical errors when M2() is negative
189 return e2 > 0 ? e2 : 0;
190 }
191
192 /**
193 transverse spatial component squared
194 */
195 Scalar Pt2() const { return fX*fX + fY*fY;}
196 Scalar Perp2() const { return Pt2();}
197
198 /**
199 Transverse spatial component (P_perp or rho)
200 */
201 Scalar Pt() const { return sqrt(Perp2()); }
202 Scalar Perp() const { return Pt();}
203 Scalar Rho() const { return Pt();}
204
205 /**
206 transverse mass squared
207 */
208 Scalar Mt2() const { return E2() - fZ*fZ; }
209
210 /**
211 transverse mass
212 */
213 Scalar Mt() const {
214 const Scalar mm = Mt2();
215 if (mm >= 0) {
216 return sqrt(mm);
217 } else {
218 GenVector::Throw ("PxPyPzM4D::Mt() - Tachyonic:\n"
219 " Pz^2 > E^2 so the transverse mass would be imaginary");
220 return -sqrt(-mm);
221 }
222 }
223
224 /**
225 transverse energy squared
226 */
227 Scalar Et2() const { // is (E^2 * pt ^2) / p^2
228 // but it is faster to form p^2 from pt^2
229 Scalar pt2 = Pt2();
230 return pt2 == 0 ? 0 : E2() * pt2/( pt2 + fZ*fZ );
231 }
232
233 /**
234 transverse energy
235 */
236 Scalar Et() const {
237 const Scalar etet = Et2();
238 return sqrt(etet);
239 }
240
241 /**
242 azimuthal angle
243 */
244 Scalar Phi() const { return (fX == 0.0 && fY == 0.0) ? 0.0 : atan2(fY, fX); }
245
246 /**
247 polar angle
248 */
249 Scalar Theta() const { return (fX == 0.0 && fY == 0.0 && fZ == 0.0) ? 0 : atan2(Pt(), fZ); }
250
251 /**
252 pseudorapidity
253 */
254 Scalar Eta() const {
255 return Impl::Eta_FromRhoZ ( Pt(), fZ);
256 }
257
258 // --------- Set Coordinates of this system ---------------
259
260
261 /**
262 set X value
263 */
264 void SetPx( Scalar px) {
265 fX = px;
266 }
267 /**
268 set Y value
269 */
270 void SetPy( Scalar py) {
271 fY = py;
272 }
273 /**
274 set Z value
275 */
276 void SetPz( Scalar pz) {
277 fZ = pz;
278 }
279 /**
280 set T value
281 */
282 void SetM( Scalar m) {
283 fM = m;
284 if (fM < 0) RestrictNegMass();
285 }
286
287 /**
288 set all values
289 */
290 void SetPxPyPzE(Scalar px, Scalar py, Scalar pz, Scalar e);
291
292 // ------ Manipulations -------------
293
294 /**
295 negate the 4-vector - Note that the energy cannot be negate (would need an additional data member)
296 therefore negate will work only on the spatial components.
297 One would need to use negate only with vectors having the energy as data members
298 */
299 void Negate( ) {
300 fX = -fX;
301 fY = -fY;
302 fZ = -fZ;
303 GenVector::Throw ("PxPyPzM4D::Negate - cannot negate the energy - can negate only the spatial components");
304 }
305
306 /**
307 scale coordinate values by a scalar quantity a
308 */
309 void Scale( const Scalar & a) {
310 fX *= a;
311 fY *= a;
312 fZ *= a;
313 fM *= a;
314 }
315
316
317 /**
318 Exact equality
319 */
320 bool operator == (const PxPyPzM4D & rhs) const {
321 return fX == rhs.fX && fY == rhs.fY && fZ == rhs.fZ && fM == rhs.fM;
322 }
323 bool operator != (const PxPyPzM4D & rhs) const {return !(operator==(rhs));}
324
325
326 // ============= Compatibility section ==================
327
328 // The following make this coordinate system look enough like a CLHEP
329 // vector that an assignment member template can work with either
330 Scalar x() const { return X(); }
331 Scalar y() const { return Y(); }
332 Scalar z() const { return Z(); }
333 Scalar t() const { return E(); }
334
335
336
337#if defined(__MAKECINT__) || defined(G__DICTIONARY)
338
339 // ====== Set member functions for coordinates in other systems =======
340
341 void SetPt(Scalar pt);
342
343 void SetEta(Scalar eta);
344
345 void SetPhi(Scalar phi);
346
347 void SetE(Scalar t);
348
349#endif
350
351private:
352
353 // restrict the value of negative mass to avoid unphysical negative E2 values
354 // M2 must be less than P2 for the tachionic particles - otherwise use positive values
355 inline void RestrictNegMass() {
356 if ( fM >=0 ) return;
357 if ( P2() - fM*fM < 0 ) {
358 GenVector::Throw("PxPyPzM4D::unphysical value of mass, set to closest physical value");
359 fM = - P();
360 }
361 return;
362 }
363
364
365 /**
366 (contigous) data containing the coordinate values x,y,z,t
367 */
368
369 ScalarType fX;
370 ScalarType fY;
371 ScalarType fZ;
372 ScalarType fM;
373
374};
375
376} // end namespace Math
377} // end namespace ROOT
378
379
380// move implementations here to avoid circle dependencies
381
384
385namespace ROOT {
386
387namespace Math {
388
389template <class ScalarType>
391 *this = PxPyPzE4D<Scalar> (px, py, pz, e);
392}
393
394
395#if defined(__MAKECINT__) || defined(G__DICTIONARY)
396
397 // ====== Set member functions for coordinates in other systems =======
398
399 // ====== Set member functions for coordinates in other systems =======
400
401template <class ScalarType>
402inline void PxPyPzM4D<ScalarType>::SetPt(ScalarType pt) {
403 GenVector_exception e("PxPyPzM4D::SetPt() is not supposed to be called");
404 throw e;
405 PtEtaPhiE4D<ScalarType> v(*this); v.SetPt(pt); *this = PxPyPzM4D<ScalarType>(v);
406}
407template <class ScalarType>
408inline void PxPyPzM4D<ScalarType>::SetEta(ScalarType eta) {
409 GenVector_exception e("PxPyPzM4D::SetEta() is not supposed to be called");
410 throw e;
411 PtEtaPhiE4D<ScalarType> v(*this); v.SetEta(eta); *this = PxPyPzM4D<ScalarType>(v);
412}
413template <class ScalarType>
414inline void PxPyPzM4D<ScalarType>::SetPhi(ScalarType phi) {
415 GenVector_exception e("PxPyPzM4D::SetPhi() is not supposed to be called");
416 throw e;
417 PtEtaPhiE4D<ScalarType> v(*this); v.SetPhi(phi); *this = PxPyPzM4D<ScalarType>(v);
418}
419template <class ScalarType>
420inline void PxPyPzM4D<ScalarType>::SetE(ScalarType energy) {
421 GenVector_exception e("PxPyPzM4D::SetE() is not supposed to be called");
422 throw e;
423 PxPyPzE4D<ScalarType> v(*this); v.SetE(energy);
424 *this = PxPyPzM4D<ScalarType>(v);
425}
426
427
428#endif // endif __MAKE__CINT || G__DICTIONARY
429
430} // end namespace Math
431
432} // end namespace ROOT
433
434
435
436#endif // ROOT_Math_GenVector_PxPyPzM4D
#define e(i)
Definition: RSha256.hxx:103
double atan2(double, double)
Class describing a 4D cylindrical coordinate system using Pt , Phi, Eta and E (or rho,...
Definition: PtEtaPhiE4D.h:52
Class describing a 4D cartesian coordinate system (x, y, z, t coordinates) or momentum-energy vectors...
Definition: PxPyPzE4D.h:42
Class describing a 4D coordinate system or momentum-energy vectors stored as (Px, Py,...
Definition: PxPyPzM4D.h:47
Scalar x() const
Definition: PxPyPzM4D.h:330
Scalar Pz() const
Definition: PxPyPzM4D.h:146
Scalar Theta() const
polar angle
Definition: PxPyPzM4D.h:249
Scalar Py() const
Definition: PxPyPzM4D.h:145
Scalar z() const
Definition: PxPyPzM4D.h:332
PxPyPzM4D(const PxPyPzM4D &v)
copy constructor
Definition: PxPyPzM4D.h:84
Scalar Px() const
Definition: PxPyPzM4D.h:144
PxPyPzM4D(const CoordSystem &v)
construct from any 4D coordinate system class implementing X(), Y(), X() and M()
Definition: PxPyPzM4D.h:75
Scalar y() const
Definition: PxPyPzM4D.h:331
Scalar Z() const
Definition: PxPyPzM4D.h:151
Scalar Et() const
transverse energy
Definition: PxPyPzM4D.h:236
PxPyPzM4D & operator=(const PxPyPzM4D &v)
assignment operator
Definition: PxPyPzM4D.h:90
Scalar E2() const
energy squared
Definition: PxPyPzM4D.h:186
ScalarType Scalar
Definition: PxPyPzM4D.h:51
void Scale(const Scalar &a)
scale coordinate values by a scalar quantity a
Definition: PxPyPzM4D.h:309
Scalar Perp() const
Definition: PxPyPzM4D.h:202
ScalarType fX
(contigous) data containing the coordinate values x,y,z,t
Definition: PxPyPzM4D.h:369
Scalar Mag() const
Definition: PxPyPzM4D.h:181
void GetCoordinates(Scalar &px, Scalar &py, Scalar &pz, Scalar &m) const
get internal data into 4 Scalar numbers
Definition: PxPyPzM4D.h:137
void SetPx(Scalar px)
set X value
Definition: PxPyPzM4D.h:264
PxPyPzM4D(Scalar px, Scalar py, Scalar pz, Scalar m)
Constructor from x, y , z , m values.
Definition: PxPyPzM4D.h:64
void SetCoordinates(const Scalar src[])
Set internal data based on an array of 4 Scalar numbers.
Definition: PxPyPzM4D.h:115
void Negate()
negate the 4-vector - Note that the energy cannot be negate (would need an additional data member) th...
Definition: PxPyPzM4D.h:299
Scalar M2() const
vector magnitude squared (or mass squared) In case of negative mass (spacelike particles return negat...
Definition: PxPyPzM4D.h:176
Scalar Mag2() const
Definition: PxPyPzM4D.h:179
Scalar P() const
magnitude of spatial components (magnitude of 3-momentum)
Definition: PxPyPzM4D.h:169
Scalar R() const
Definition: PxPyPzM4D.h:170
void SetPz(Scalar pz)
set Z value
Definition: PxPyPzM4D.h:276
Scalar Mt2() const
transverse mass squared
Definition: PxPyPzM4D.h:208
void SetCoordinates(Scalar px, Scalar py, Scalar pz, Scalar m)
Set internal data based on 4 Scalar numbers.
Definition: PxPyPzM4D.h:129
Scalar X() const
Definition: PxPyPzM4D.h:149
void GetCoordinates(Scalar dest[]) const
get internal data into an array of 4 Scalar numbers
Definition: PxPyPzM4D.h:123
Scalar M() const
Definition: PxPyPzM4D.h:147
Scalar Pt() const
Transverse spatial component (P_perp or rho)
Definition: PxPyPzM4D.h:201
bool operator==(const PxPyPzM4D &rhs) const
Exact equality.
Definition: PxPyPzM4D.h:320
Scalar E() const
Energy.
Definition: PxPyPzM4D.h:157
void SetPy(Scalar py)
set Y value
Definition: PxPyPzM4D.h:270
Scalar Mt() const
transverse mass
Definition: PxPyPzM4D.h:213
Scalar Y() const
Definition: PxPyPzM4D.h:150
Scalar Phi() const
azimuthal angle
Definition: PxPyPzM4D.h:244
Scalar P2() const
squared magnitude of spatial components
Definition: PxPyPzM4D.h:164
Scalar Pt2() const
transverse spatial component squared
Definition: PxPyPzM4D.h:195
bool operator!=(const PxPyPzM4D &rhs) const
Definition: PxPyPzM4D.h:323
Scalar Perp2() const
Definition: PxPyPzM4D.h:196
Scalar Et2() const
transverse energy squared
Definition: PxPyPzM4D.h:227
Scalar Rho() const
Definition: PxPyPzM4D.h:203
PxPyPzM4D()
Default constructor with x=y=z=m=0.
Definition: PxPyPzM4D.h:58
Scalar t() const
Definition: PxPyPzM4D.h:333
void SetM(Scalar m)
set T value
Definition: PxPyPzM4D.h:282
Scalar T() const
Definition: PxPyPzM4D.h:159
void SetPxPyPzE(Scalar px, Scalar py, Scalar pz, Scalar e)
set all values
Definition: PxPyPzM4D.h:390
Scalar Eta() const
pseudorapidity
Definition: PxPyPzM4D.h:254
TPaveText * pt
Namespace for new Math classes and functions.
void Throw(const char *)
function throwing exception, by creating internally a GenVector_exception only when needed
Scalar Eta_FromRhoZ(Scalar rho, Scalar z)
Calculate eta given rho and zeta.
Definition: eta.h:48
VecExpr< UnaryOp< Sqrt< T >, VecExpr< A, T, D >, T >, T, D > sqrt(const VecExpr< A, T, D > &rhs)
Rotation3D::Scalar Scalar
VSD Structures.
Definition: StringConv.hxx:21
static constexpr double mm
auto * m
Definition: textangle.C:8
auto * a
Definition: textangle.C:12
#define dest(otri, vertexptr)
Definition: triangle.c:1040