Logo ROOT   6.18/05
Reference Guide
rf608_fitresultaspdf.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_roofit
3/// \notebook
4/// Likelihood and minimization: representing the parabolic approximation of the fit as a multi-variate Gaussian on the
5/// parameters of the fitted p.d.f.
6///
7/// \macro_image
8/// \macro_output
9/// \macro_code
10/// \author 07/2008 - Wouter Verkerke
11
12#include "RooRealVar.h"
13#include "RooDataSet.h"
14#include "RooGaussian.h"
15#include "RooConstVar.h"
16#include "RooAddPdf.h"
17#include "RooChebychev.h"
18#include "RooFitResult.h"
19#include "TCanvas.h"
20#include "TAxis.h"
21#include "RooPlot.h"
22#include "TFile.h"
23#include "TStyle.h"
24#include "TH2.h"
25#include "TH3.h"
26
27using namespace RooFit;
28
30{
31 // C r e a t e m o d e l a n d d a t a s e t
32 // -----------------------------------------------
33
34 // Observable
35 RooRealVar x("x", "x", -20, 20);
36
37 // Model (intentional strong correlations)
38 RooRealVar mean("mean", "mean of g1 and g2", 0, -1, 1);
39 RooRealVar sigma_g1("sigma_g1", "width of g1", 2);
40 RooGaussian g1("g1", "g1", x, mean, sigma_g1);
41
42 RooRealVar sigma_g2("sigma_g2", "width of g2", 4, 3.0, 5.0);
43 RooGaussian g2("g2", "g2", x, mean, sigma_g2);
44
45 RooRealVar frac("frac", "frac", 0.5, 0.0, 1.0);
46 RooAddPdf model("model", "model", RooArgList(g1, g2), frac);
47
48 // Generate 1000 events
49 RooDataSet *data = model.generate(x, 1000);
50
51 // F i t m o d e l t o d a t a
52 // ----------------------------------
53
54 RooFitResult *r = model.fitTo(*data, Save());
55
56 // C r e a t e M V G a u s s i a n p d f o f f i t t e d p a r a m e t e r s
57 // ------------------------------------------------------------------------------------
58
59 RooAbsPdf *parabPdf = r->createHessePdf(RooArgSet(frac, mean, sigma_g2));
60
61 // S o m e e x e c e r c i s e s w i t h t h e p a r a m e t e r p d f
62 // -----------------------------------------------------------------------------
63
64 // Generate 100K points in the parameter space, sampled from the MVGaussian p.d.f.
65 RooDataSet *d = parabPdf->generate(RooArgSet(mean, sigma_g2, frac), 100000);
66
67 // Sample a 3-D histogram of the p.d.f. to be visualized as an error ellipsoid using the GLISO draw option
68 TH3 *hh_3d = (TH3 *)parabPdf->createHistogram("mean,sigma_g2,frac", 25, 25, 25);
69 hh_3d->SetFillColor(kBlue);
70
71 // Project 3D parameter p.d.f. down to 3 permutations of two-dimensional p.d.f.s
72 // The integrations corresponding to these projections are performed analytically
73 // by the MV Gaussian p.d.f.
74 RooAbsPdf *pdf_sigmag2_frac = parabPdf->createProjection(mean);
75 RooAbsPdf *pdf_mean_frac = parabPdf->createProjection(sigma_g2);
76 RooAbsPdf *pdf_mean_sigmag2 = parabPdf->createProjection(frac);
77
78 // Make 2D plots of the 3 two-dimensional p.d.f. projections
79 TH2 *hh_sigmag2_frac = (TH2 *)pdf_sigmag2_frac->createHistogram("sigma_g2,frac", 50, 50);
80 TH2 *hh_mean_frac = (TH2 *)pdf_mean_frac->createHistogram("mean,frac", 50, 50);
81 TH2 *hh_mean_sigmag2 = (TH2 *)pdf_mean_sigmag2->createHistogram("mean,sigma_g2", 50, 50);
82 hh_mean_frac->SetLineColor(kBlue);
83 hh_sigmag2_frac->SetLineColor(kBlue);
84 hh_mean_sigmag2->SetLineColor(kBlue);
85
86 // Draw the 'sigar'
87 new TCanvas("rf608_fitresultaspdf_1", "rf608_fitresultaspdf_1", 600, 600);
88 hh_3d->Draw("iso");
89
90 // Draw the 2D projections of the 3D p.d.f.
91 TCanvas *c2 = new TCanvas("rf608_fitresultaspdf_2", "rf608_fitresultaspdf_2", 900, 600);
92 c2->Divide(3, 2);
93 c2->cd(1);
94 gPad->SetLeftMargin(0.15);
95 hh_mean_sigmag2->GetZaxis()->SetTitleOffset(1.4);
96 hh_mean_sigmag2->Draw("surf3");
97 c2->cd(2);
98 gPad->SetLeftMargin(0.15);
99 hh_sigmag2_frac->GetZaxis()->SetTitleOffset(1.4);
100 hh_sigmag2_frac->Draw("surf3");
101 c2->cd(3);
102 gPad->SetLeftMargin(0.15);
103 hh_mean_frac->GetZaxis()->SetTitleOffset(1.4);
104 hh_mean_frac->Draw("surf3");
105
106 // Draw the distributions of parameter points sampled from the p.d.f.
107 TH1 *tmp1 = d->createHistogram("mean,sigma_g2", 50, 50);
108 TH1 *tmp2 = d->createHistogram("sigma_g2,frac", 50, 50);
109 TH1 *tmp3 = d->createHistogram("mean,frac", 50, 50);
110
111 c2->cd(4);
112 gPad->SetLeftMargin(0.15);
113 tmp1->GetZaxis()->SetTitleOffset(1.4);
114 tmp1->Draw("lego3");
115 c2->cd(5);
116 gPad->SetLeftMargin(0.15);
117 tmp2->GetZaxis()->SetTitleOffset(1.4);
118 tmp2->Draw("lego3");
119 c2->cd(6);
120 gPad->SetLeftMargin(0.15);
121 tmp3->GetZaxis()->SetTitleOffset(1.4);
122 tmp3->Draw("lego3");
123}
ROOT::R::TRInterface & r
Definition: Object.C:4
#define d(i)
Definition: RSha256.hxx:102
@ kBlue
Definition: Rtypes.h:64
#define gPad
Definition: TVirtualPad.h:286
RooDataSet * generate(const RooArgSet &whatVars, Int_t nEvents, const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none())
See RooAbsPdf::generate(const RooArgSet&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,...
Definition: RooAbsPdf.h:56
virtual RooAbsPdf * createProjection(const RooArgSet &iset)
Return a p.d.f that represent a projection of this p.d.f integrated over given observables.
Definition: RooAbsPdf.cxx:2979
TH1 * createHistogram(const char *varNameList, Int_t xbins=0, Int_t ybins=0, Int_t zbins=0) const
Create and fill a ROOT histogram TH1, TH2 or TH3 with the values of this function for the variables w...
RooAddPdf is an efficient implementation of a sum of PDFs of the form.
Definition: RooAddPdf.h:29
RooArgList is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgList.h:21
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
RooDataSet is a container class to hold unbinned data.
Definition: RooDataSet.h:31
RooFitResult is a container class to hold the input and output of a PDF fit to a dataset.
Definition: RooFitResult.h:40
Plain Gaussian p.d.f.
Definition: RooGaussian.h:25
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title Offset is a correction factor with respect to the "s...
Definition: TAttAxis.cxx:294
virtual void SetFillColor(Color_t fcolor)
Set the fill area color.
Definition: TAttFill.h:37
virtual void SetLineColor(Color_t lcolor)
Set the line color.
Definition: TAttLine.h:40
The Canvas class.
Definition: TCanvas.h:31
The TH1 histogram class.
Definition: TH1.h:56
TAxis * GetZaxis()
Definition: TH1.h:318
virtual void Draw(Option_t *option="")
Draw this histogram with options.
Definition: TH1.cxx:2981
Service class for 2-Dim histogram classes.
Definition: TH2.h:30
The 3-D histogram classes derived from the 1-D histogram classes.
Definition: TH3.h:31
Double_t x[n]
Definition: legend1.C:17
return c2
Definition: legend2.C:14
Template specialisation used in RooAbsArg:
RooCmdArg Save(Bool_t flag=kTRUE)