Logo ROOT   6.18/05
Reference Guide
rf313_paramranges.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_roofit
3/// \notebook -js
4/// Multidimensional models: working with parametrized ranges to define non-rectangular regions for fitting and
5/// integration
6///
7/// \macro_image
8/// \macro_output
9/// \macro_code
10/// \author 07/2008 - Wouter Verkerke
11
12#include "RooRealVar.h"
13#include "RooDataSet.h"
14#include "RooGaussian.h"
15#include "RooConstVar.h"
16#include "RooPolynomial.h"
17#include "RooProdPdf.h"
18#include "TCanvas.h"
19#include "TAxis.h"
20#include "RooPlot.h"
21using namespace RooFit;
22
24{
25
26 // C r e a t e 3 D p d f
27 // -------------------------
28
29 // Define observable (x,y,z)
30 RooRealVar x("x", "x", 0, 10);
31 RooRealVar y("y", "y", 0, 10);
32 RooRealVar z("z", "z", 0, 10);
33
34 // Define 3 dimensional pdf
35 RooRealVar z0("z0", "z0", -0.1, 1);
36 RooPolynomial px("px", "px", x, RooConst(0));
37 RooPolynomial py("py", "py", y, RooConst(0));
38 RooPolynomial pz("pz", "pz", z, z0);
39 RooProdPdf pxyz("pxyz", "pxyz", RooArgSet(px, py, pz));
40
41 // D e f i n e d n o n - r e c t a n g u l a r r e g i o n R i n ( x , y , z )
42 // -------------------------------------------------------------------------------------
43
44 //
45 // R = Z[0 - 0.1*Y^2] * Y[0.1*X - 0.9*X] * X[0 - 10]
46 //
47
48 // Construct range parametrized in "R" in y [ 0.1*x, 0.9*x ]
49 RooFormulaVar ylo("ylo", "0.1*x", x);
50 RooFormulaVar yhi("yhi", "0.9*x", x);
51 y.setRange("R", ylo, yhi);
52
53 // Construct parametrized ranged "R" in z [ 0, 0.1*y^2 ]
54 RooFormulaVar zlo("zlo", "0.0*y", y);
55 RooFormulaVar zhi("zhi", "0.1*y*y", y);
56 z.setRange("R", zlo, zhi);
57
58 // C a l c u l a t e i n t e g r a l o f n o r m a l i z e d p d f i n R
59 // ----------------------------------------------------------------------------------
60
61 // Create integral over normalized pdf model over x,y,z in "R" region
62 RooAbsReal *intPdf = pxyz.createIntegral(RooArgSet(x, y, z), RooArgSet(x, y, z), "R");
63
64 // Plot value of integral as function of pdf parameter z0
65 RooPlot *frame = z0.frame(Title("Integral of pxyz over x,y,z in region R"));
66 intPdf->plotOn(frame);
67
68 new TCanvas("rf313_paramranges", "rf313_paramranges", 600, 600);
69 gPad->SetLeftMargin(0.15);
70 frame->GetYaxis()->SetTitleOffset(1.6);
71 frame->Draw();
72
73 return;
74}
#define gPad
Definition: TVirtualPad.h:286
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
Definition: RooAbsReal.h:53
virtual RooPlot * plotOn(RooPlot *frame, const RooCmdArg &arg1=RooCmdArg(), const RooCmdArg &arg2=RooCmdArg(), const RooCmdArg &arg3=RooCmdArg(), const RooCmdArg &arg4=RooCmdArg(), const RooCmdArg &arg5=RooCmdArg(), const RooCmdArg &arg6=RooCmdArg(), const RooCmdArg &arg7=RooCmdArg(), const RooCmdArg &arg8=RooCmdArg(), const RooCmdArg &arg9=RooCmdArg(), const RooCmdArg &arg10=RooCmdArg()) const
Plot (project) PDF on specified frame.
RooAbsReal * createIntegral(const RooArgSet &iset, const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) const
Create an object that represents the integral of the function over one or more observables listed in ...
Definition: RooAbsReal.cxx:531
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
A RooFormulaVar is a generic implementation of a real-valued object, which takes a RooArgList of serv...
Definition: RooFormulaVar.h:27
A RooPlot is a plot frame and a container for graphics objects within that frame.
Definition: RooPlot.h:41
TAxis * GetYaxis() const
Definition: RooPlot.cxx:1123
virtual void Draw(Option_t *options=0)
Draw this plot and all of the elements it contains.
Definition: RooPlot.cxx:558
RooPolynomial implements a polynomial p.d.f of the form.
Definition: RooPolynomial.h:28
RooProdPdf is an efficient implementation of a product of PDFs of the form.
Definition: RooProdPdf.h:31
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title Offset is a correction factor with respect to the "s...
Definition: TAttAxis.cxx:294
The Canvas class.
Definition: TCanvas.h:31
Double_t y[n]
Definition: legend1.C:17
Double_t x[n]
Definition: legend1.C:17
Template specialisation used in RooAbsArg:
RooConstVar & RooConst(Double_t val)
const char * Title
Definition: TXMLSetup.cxx:67