Multidimensional models: projecting p.d.f and data slices in discrete observables
import ROOT
dt = ROOT.RooRealVar("dt", "dt", -20, 20)
mixState = ROOT.RooCategory("mixState", "B0/B0bar mixing state")
tagFlav = ROOT.RooCategory("tagFlav", "Flavour of the tagged B0")
mixState.defineType("mixed", -1)
mixState.defineType("unmixed", 1)
tagFlav.defineType("B0", 1)
tagFlav.defineType("B0bar", -1)
dm = ROOT.RooRealVar("dm", "delta m(B)", 0.472, 0., 1.0)
tau = ROOT.RooRealVar("tau", "B0 decay time", 1.547, 1.0, 2.0)
w = ROOT.RooRealVar("w", "Flavor Mistag rate", 0.03, 0.0, 1.0)
dw = ROOT.RooRealVar(
"dw", "Flavor Mistag rate difference between B0 and B0bar", 0.01)
bias1 = ROOT.RooRealVar("bias1", "bias1", 0)
sigma1 = ROOT.RooRealVar("sigma1", "sigma1", 0.01)
gm1 = ROOT.RooGaussModel("gm1", "gauss model 1", dt, bias1, sigma1)
bmix_gm1 = ROOT.RooBMixDecay(
"bmix",
"decay",
dt,
mixState,
tagFlav,
tau,
dm,
w,
dw,
gm1,
ROOT.RooBMixDecay.DoubleSided)
data = bmix_gm1.generate(ROOT.RooArgSet(dt, tagFlav, mixState), 20000)
frame = dt.frame(ROOT.RooFit.Title("Inclusive decay distribution"))
data.plotOn(frame)
bmix_gm1.plotOn(frame)
frame2 = dt.frame(ROOT.RooFit.Title("Decay distribution of mixed events"))
data.plotOn(frame2, ROOT.RooFit.Cut("mixState==mixState::mixed"))
bmix_gm1.plotOn(frame2, ROOT.RooFit.Slice(mixState, "mixed"))
frame3 = dt.frame(ROOT.RooFit.Title(
"Decay distribution of unmixed events"))
data.plotOn(frame3, ROOT.RooFit.Cut("mixState==mixState::unmixed"))
bmix_gm1.plotOn(frame3, ROOT.RooFit.Slice(mixState, "unmixed"))
c = ROOT.TCanvas("rf310_sliceplot", "rf310_sliceplot", 1200, 400)
c.Divide(3)
c.cd(1)
ROOT.gPad.SetLeftMargin(0.15)
frame.GetYaxis().SetTitleOffset(1.4)
ROOT.gPad.SetLogy()
frame.Draw()
c.cd(2)
ROOT.gPad.SetLeftMargin(0.15)
frame2.GetYaxis().SetTitleOffset(1.4)
ROOT.gPad.SetLogy()
frame2.Draw()
c.cd(3)
ROOT.gPad.SetLeftMargin(0.15)
frame3.GetYaxis().SetTitleOffset(1.4)
ROOT.gPad.SetLogy()
frame3.Draw()
c.SaveAs("rf310_sliceplot.png")